ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface |
Xin-Jun Zhao(赵新军)1,2, Zhi-Fu Gao(高志福)3 |
1 Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal University, Yining 835000, China; 2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 3 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China |
|
|
Abstract Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA (ssDNA) tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ssDNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ssDNA will collapse due to the existence of electrostatic interaction between ssDNA and charged nanoparticle surface; ii) for the short ssDNA chains with the number of bases less than 10, the switching of ssDNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ssDNA and charged nanoparticle surface becomes weak dramatically, and ssDNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ssDNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ssDNA will not happen if the grafting densities are too high.
|
Received: 21 July 2015
Revised: 18 February 2016
Accepted manuscript online:
|
PACS:
|
47.27.eb
|
(Statistical theories and models)
|
|
05.65.+b
|
(Self-organized systems)
|
|
Fund: Project supported by the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2015211C298). |
Corresponding Authors:
Xin-Jun Zhao
E-mail: zhaoxinjunzxj@163.com
|
Cite this article:
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福) Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface 2016 Chin. Phys. B 25 074702
|
[1] |
Riehemann K, Schneider S W, Luger T A, Godin B, Ferrari M and Fuchs H 2009 Angew. Chem. Int. Ed. 48 872
|
[2] |
Li Z, Barnes J C, Boscoy A, Stoddart J F and Zink J I 2012 Chem. Soc. Rev. 41 2590
|
[3] |
Aznar E, Marcos M D, Martinez-Manez R, Soto J, Amoros P and Guillem C 2009 J. Am. Chem. Soc. 131 6833
|
[4] |
Rim H P and Min K H 2014 Chem. Commun. 50 3494
|
[5] |
Thornton P D and Heise A 2010 J. Am. Chem. Soc. 132 2024
|
[6] |
Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S and Lin V S Y 2003 J. Am. Chem. Soc. 125 4451
|
[7] |
Liu R, Zhao X, Wu T and Feng P 2008 J. Am. Chem. Soc. 130 14418
|
[8] |
Croissant J and Zink J I 2012 J. Am. Chem. Soc. 134 7628
|
[9] |
Climent E, Martnez-Manez R, Sancenon F, Marcos M D, Soto J, Maquieira A and Amoros P 2010 Angew. Chem. Int. Ed. 49 7281
|
[10] |
Schlossbauer A, Warncke S, Gramlich P M E, Kecht J, Manetto A, Carell T and Bein T 2010 Angew. Chem. Int. Ed. 49 4734
|
[11] |
Ruiz-Hernandez E, Baeza A and Vallet-Regi M 2011 ACS Nano. 5 1259
|
[12] |
Xu Y, Chen H, Qu Y, Artem K E, Li M, Ouyang Z C, Liu D S and Yan J 2014 Chin. Phys. B 23 068702
|
[13] |
Yu Z Z, Li N, Zheng P P, Pan W and Tang B 2014 Chem. Commun. 50 3494
|
[14] |
Yamamoto T and Pincus P A 2011 Europhys. Lett. 95 48003
|
[15] |
Elder R M and Jayaraman A 2013 Soft Matter 9 11521
|
[16] |
Szleifer I and Carignano M A 1996 Adv. Chem. Phys. 94 165
|
[17] |
Carignano M A and Szleifer I 1993 J. Chem. Phys. 98 5006
|
[18] |
Szleifer I and Carignano M A 2000 Macromol. Rapid Commun. 21 423
|
[19] |
You X Y, Zheng X J and Zheng J R 2007 Acta Phy. Sin. 56 2323 (in Chinese)
|
[20] |
Zhao X J, Gao Z F and Jiang Z Y 2015 Chin. Phys. B 24 044701
|
[21] |
Zdyrko B and Luzinov I 2011 Macromol. Rapid Commun. 32 859
|
[22] |
Iyer K S and Luzinov I 2004 Macromolecules 37 9538
|
[23] |
Uline M J, Rabin Y and Szleifer I 2011 Langmuir 27 4679
|
[24] |
Xu M Y, Du C and Mi J C 2011 Acta Phy. Sin. 60 034701 (in Chinese)
|
[25] |
Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
|
[26] |
Gong P, Genzer J and Szleifer I 2007 Phys. Rev. Lett. 98 018302
|
[27] |
Nap R, Gong P and Szleifer I 2006 J. Polym. Sci., Part B: Polym. Phys. 44 2638
|
[28] |
Tagliazucchi M, de la Cruz M O and Szleifer I 2010 Proc. Natl. Acad. Sci. USA 107 5300
|
[29] |
Tagliazucchi M, Calvo E J and Szleifer I 2010 AIChE J. 56 1952
|
[30] |
Ren C L and Ma Y Q 2011 Soft Matter 7 10841
|
[31] |
Longo G S, De La Cruzab M O and Szleifer I 2012 Soft Matter 8 1344
|
[32] |
Dong R, Lindau M and Ober C K 2009 Langmur 25 4774
|
[33] |
Egholm M, Buchardt O, Christensen L, Behrens C, Freier S M, Driver D A, Berg R H, Kim S K, Norden B and Nielsen P E 1993 Nature 365 566
|
[34] |
Anjana S and Nielsen P E 2009 Biophys. Chem. 141 29
|
[35] |
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S 2004 Science 303 1526
|
[36] |
Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang H W Wang J, Zhu J K, Shi Y and Yan N 2013 Nature 504 168
|
[37] |
Sheehan P E and Whitman L J 2002 Phys. Rev. Lett. 88 156104
|
[38] |
Zou L Y, Bai J S, Li B Y, Tan D W, Li P and Liu C Li 2008 Chin. Phys. B 17 1034
|
[39] |
Zhang Y J and Wang Z Z 2009 Acta Phy. Sin. 58 6074 (in Chinese)
|
[40] |
Wu J C, Qin S G and Wang Y 2009 Chin. Phys. Lett. 26 084702
|
[41] |
Wu J C, Qin S G and Lv X M 2010 Chin. Phys. Lett. 27 034701
|
[42] |
Tagliazucchi M, Rabin Y, Szleifer I 2011 J. Am. Chem. Soc. 133 17753
|
[43] |
Wang B B, Cui G X, Xu C X and Zhang Z S 2012 Chin. Phys. Lett. 29 104701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|