Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068105    DOI: 10.1088/1674-1056/25/6/068105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations

Mohsen Yarmohammadi1, Malek Zareyan2
1 Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran;
2 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45195-1159, Iran
Abstract  

In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., fm+(r), gm+(r), and fm-(r), gm-(r), can be established by SO(2) group.

Keywords:  monolayer gapped graphene      quantum dots      bound states      inversion symmetry breaking  
Received:  10 December 2015      Revised:  05 February 2016      Accepted manuscript online: 
PACS:  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  72.10.Bg (General formulation of transport theory)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Corresponding Authors:  Mohsen Yarmohammadi     E-mail:  m.yarmohammadi69@gmail.com

Cite this article: 

Mohsen Yarmohammadi, Malek Zareyan Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations 2016 Chin. Phys. B 25 068105

[1] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[2] Milton Pereira J Jr, Vasilopoulos P and Peeters F M 2007 Appl. Phys. Lett. 90 132122
[3] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Recher P, Trauzettel B, Blanter Y M, Beenakker C and Morpurgo A 2007 Phys. Rev. B 76 235404
[5] Wunsch B, Stauber T and Guinea F 2008 Phys. Rev. B 77 035316
[6] Romanovsky I, Yannouleas C and Landman U 2013 Phys. Rev. B 87 165431
[7] Ponomarenko L A, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
[8] Volk C, Neumann C, Kazarski S, Fringes S, Engels S, Haupt F, Muller A and Stampfer C 2013 Nat. Commun. 4 1753
[9] Stampfer C, Guttinger J, Hellmuller S, Molitor F, Ensslin K and Ihn T 2009 Phys. Rev. Lett. 102 056403
[10] Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, Li A P, Jiang Z, Conrad E H, Berger C, Tegenkamp C and De Heer W A 2014 Nature 506 349
[11] Silvestrov P and Efetov K 2007 Phys. Rev. Lett. 98 016802
[12] De Martino A, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[13] Peres N, Rodrigues J, Stauber T and Dos Santos J L 2009 J. Phys.: Condens. Matter 21 344202
[14] Rusponi S, Papagno M, Moras P, Vlaic S, Etzkorn M, Sheverdyaeva P, Pacile D, Brune H and Carbone C 2010 Phys. Rev. Lett. 105 246803
[15] Hunt B, Sanchez-Yamagishi J, Young A, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
[16] Fuhrer M S 2013 Science 340 1413
[17] Lima J R 2015 Phys. Lett. A 379 179
[18] Maksimova G, Azarova E, Telezhnikov A and Burdov V 2012 Phys. Rev. B 86 205422
[19] Liu W, Wang Z F, Shi Q W, Yang J and Liu F 2009 Phys. Rev. B 80 233405
[20] Jackiw R 2012 Phys. Scr. 85 014005
[21] Ferreira G J and Loss D 2013 Phys. Rev. Lett. 111 106802
[22] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[23] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[24] Novoselov K S, Geim A K, Morozov S V, Jiang D, Grigorieva I V and Firsov A A 2004 Science 306 666
[25] Novoselov K S, Geim A K, Morozov S V, Jiang D, Dubonos S V and Firsov A A 2005 Nature 438 197
[26] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[27] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and De Heer W A 2006 Science 312 1191
[28] Zhou S Y, Gweon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G and Lanzara A 2006 Nat. Phys. 2 595
[29] Chen H Y, Apalkov V and Chakraborty T 2007 Phys. Rev. Lett. 98 186803
[30] Matulis A and Peeters F M 2008 Phys. Rev. B 77 115423
[31] Hewageegana P and Apalkov V 2008 Phys. Rev. B 77 245426
[32] Milton Pereira J Jr, Peeters F M and Vasilopoulos P 2007 Phys. Rev. B 75 125433
[33] De Martino A, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[34] Park S and Sim H S 2008 Phys. Rev. B 77 075433
[35] Ramezani Masir M and Peeters F M 2009 Phys. Rev. B 79 155451
[36] Scalapino D J 1995 Phys. Rep. 250 329
[37] Keldysh L V 1963 J. Exp. Theor. Phys. 45 365
[38] Ktitorov S A and Tamarchenko V I 1977 Sov. Phys. 19 2070
[39] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2008 Rev. Mod. Phys 80 1337
[40] Zhou S Y, Gweon G H, Fedorov A V, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[41] Aleiner I L and Efetov K B 2006 Phys. Rev. Lett. 97 236801
[42] Basko D M 2008 Phys. Rev. B 78 115432
[43] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[44] Wallace P R 1947 Phys. Rev. 71 622
[45] Lherbier A, Blaze X, Niquet Y M, Triozon F and Roche S 2008 Phys. Rev. Lett. 101 036808
[46] Dong S H and Ma Z Q 2002 Phys. Lett. A 15 171
[47] Chau Nguyen H, Nguyen N T T and Lien Nguyen V 2015 arXiv: 1511.00535v1 [cond-mat.mes-hall]
[48] Novikov D S 2007 Phys. Rev. B 76 245435
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[12] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[13] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[14] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[15] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
No Suggested Reading articles found!