Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068401    DOI: 10.1088/1674-1056/25/6/068401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An efficient multipaction suppression method in microwave components for space application

Wan-Zhao Cui(崔万照)1, Yun Li(李韵)1, Jing Yang(杨晶)1, Tian-Cun Hu(胡天存)1, Xin-Bo Wang(王新波)1, Rui Wang(王瑞)1, Na Zhang(张娜)1, Hong-Tai Zhang(张洪太)1, Yong-Ning He(贺永宁)2
1 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an), Xi’an 710100, China;
2 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract  

Multipaction, caused by the secondary electron emission phenomenon, has been a challenge in space applications due to the resulting degradation of system performance as well as the reduction in the service life of high power components. In this paper we report a novel approach to realize an effective increase in the multipaction threshold by employing micro-porous surfaces. Two micro-porous structures, i.e., a regular micro-porous array fabricated by photolithography pattern processing and an irregular micro-porous array fabricated by a direct chemical etching technique, are proposed for suppressing the secondary electron yield (SEY) and multipaction in components, and the benefits are validated both theoretically and experimentally. These surface processing technologies are compatible with the metal plating process, and offer substantial flexibility and accuracy in topology design. The suppression effect is quantified for the first time through the proper fitting of the surface morphology and the corresponding secondary emission properties. Insertion losses when using these structures decrease dramatically compared with regular millimeter-scale structures on high power dielectric windows. SEY tests on samples show that the maximum yield of Ag-plated samples is reduced from 2.17 to 1.58 for directly chemical etched samples. Multipaction testing of actual C-band impedance transformers shows that the discharge thresholds of the processed components increase from 2100 W to 5500 W for photolithography pattern processing and 7200 W for direct chemical etching, respectively. Insertion losses increase from 0.13 dB to only 0.15 dB for both surface treatments in the transmission band. The experimental results agree well with the simulation results, which offers great potential in the quantitative anti-multipaction design of high power microwave components for space applications.

Keywords:  electrodynamics      aerospace industry      multipactor      surface treatment  
Received:  19 November 2015      Revised:  20 February 2016      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. U1537211), the National Key Laboratory Key Foundation, China (Grant No. 9140C530101150C53011), and China Postdoctoral Science Foundation (Grant No. 2015M572661XB).

Corresponding Authors:  Wan-Zhao Cui     E-mail:  cuiwanzhao@126.com

Cite this article: 

Wan-Zhao Cui(崔万照), Yun Li(李韵), Jing Yang(杨晶), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Rui Wang(王瑞), Na Zhang(张娜), Hong-Tai Zhang(张洪太), Yong-Ning He(贺永宁) An efficient multipaction suppression method in microwave components for space application 2016 Chin. Phys. B 25 068401

[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Yang W J, Li Y D and Liu C L 2013 Acta Phys. Sin. 62 087901 (in Chinese)
[3] Song Q Q, Wang X B, Cui W Z, Wang Z Y and Ran L X 2014 Acta Phys. Sin. 63 220205 (in Chinese)
[4] Zhu F, Proch D and Hao J K 2005 Chin. Phys. 14 494
[5] Lu Q L, Zhou Z Y, Shi L Q and Zhao G Q 2005 Chin. Phys. 14 1465
[6] Rozario N and Lenzing H 1994 IEEE Trans. MTT 42 558
[7] Kudsia C, Cameron R and Tang W C 1992 IEEE Trans. Microwave Theor. Techniq. 40 1133
[8] Li Y D, Yan Y J, Lin S, Wang H G and Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)
[9] Lara J, Pérez F, Alfonseca M, Galán L, Montero I, Román E and Raboso D 2006 IEEE Trans. Plasma Sci. 34 476
[10] Hueso J, Vicente C, Gimino B, Boria V E, Marini S and Raroncher M 2010 IEEE Trans. Electron Dev. 57 3508
[11] Joy D C 2008 A Database of Electron-Solid Interactions, Revision # 08-1 (2008)
[12] Pivi M, King F K, Kirby R E, Raubenheimer T O, Stupakov G and Pimpec F Le 2008 J. Appl. Phys. 104 104904
[13] Chang C, Liu G Z, Fang J Y, Tang C X, Huang J C, Chen C H, Zhang Q F, Liang T Z, Zhu X X and Li J W 2010 Laser and Particle Beams 28 185
[14] Chang C, Liu G Z, Tang C, Chen C and Fang J Y 2011 Phys. Plasmas 18 055702
[15] Ye M, He Y N, Hu S G, Yang J, Wang R, Hu T C, Peng W B and Cui W Z 2013 J. Appl. Phys. 114 10495
[16] Zhang H B, Hu X C, Wang R, Cao M, Zhang N and Cui W Z 2002 Rev. Sci. Instrum. 83 066105
[17] Wang R and Cui W Z 2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 498-501 (2011)
[18] Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D and Zhang J F 2014 Chin. Phys. B 23 048402
[19] Li Y, Cui W Z and Wang H G 2015 Phys. Plasma 22 053108
[20] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test, ESA Publication Division, the Netherlands, ECSS-20-01A
[21] Rasch J, Semenov V E, Rakova E, Anderson D, Johansson J F, Lisak M and Puech J 2011 IEEE Trans. Plasma Sci. 39 1786
[22] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Lisak M and Puech J 2010 J. Phys. D: Appl. Phys. 43 5206
[23] Semenov V E, Zharova N, Udiljak R, Anderson D, Lisak M and Puech J 2007 Phys. Plasmas 14 033509
[24] Frotanpour A, Dadashzadeh G, Shahabadi M and Gimeno B 2011 IEEE Trans. Electron Dev. 58 876
[25] Semenov V E, Rakova E I, Sazontov A G, Nefedov I M, Pozdnyakova V I, Shereshevskii I A, Anderson D, Lisak M and Puech J 2009 J. Phys. D: Appl. Phys. 42 205204
[26] Zhang N, Cao M, Cui W Z, Hu T C, Wang R and Li Y 2015 Acta Phys. Sin. 64 207901 (in Chinese)
[27] Li Y D, Yang W J, Zhang N, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese)
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[4] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[7] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[8] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[9] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[10] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[11] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[12] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[13] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[14] An improved secondary electrons energy spectrum model and its application in multipactor discharge
Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶). Chin. Phys. B, 2018, 27(3): 038401.
[15] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
No Suggested Reading articles found!