Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067803    DOI: 10.1088/1674-1056/25/6/067803
Special Issue: Virtual Special Topic — High temperature superconductivity
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Raman scattering studies on the collapsed phase of CaCo2As2

Jianting Ji(籍建葶)1, Anmin Zhang(张安民)1, Run Yang(杨润)2, Yong Tian(田勇)1, Feng Jin(金峰)1, Xianggang Qiu(邱祥冈)2, Qingming Zhang(张清明)1
1 Department of Physics, Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

In this work, Raman scattering measurements have been performed on the collapsed phase CaCo2As2 crystals. At least 8 Raman modes were observed at room temperature though CaCo2As2 is structurally similar to other 122 compounds like BaFe2As2. Two Raman modes are assigned to the intrinsic A1g and B1g of this material system respectively. The other ones are considered to originate from the local vibrations relevant to cobalt vacancies. Careful polarized measurements allow us to clearly resolve the four-fold symmetry of the B1g mode, which put strong constraints on possible point group symmetries of the system with Co vacancies. The temperature-dependent measurements demonstrate that the anomalies in both frequency and width of the B1g mode occur around Neel temperature TN. The anomalies are considered to be related to the gap opening near the magnetic transition. The study may shed light on the structural and magnetic changes and their correlations with superconductivity in 122 systems.

Keywords:  iron-based superconductivity      Raman scattering      collapsed phase  
Received:  29 February 2016      Revised:  24 March 2016      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  63.20.-e (Phonons in crystal lattices)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB921701), the National Natural Science Foundation of China (Grant No. 11474357), and the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.

Corresponding Authors:  Qingming Zhang     E-mail:  qmzhang@ruc.edu.cn

Cite this article: 

Jianting Ji(籍建葶), Anmin Zhang(张安民), Run Yang(杨润), Yong Tian(田勇), Feng Jin(金峰), Xianggang Qiu(邱祥冈), Qingming Zhang(张清明) Raman scattering studies on the collapsed phase of CaCo2As2 2016 Chin. Phys. B 25 067803

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[3] Anand V K, Kim H, Tanatar M A, Prozorov R and Johnston D C 2013 Phys. Rev. B 87 224510
[4] An J, Sefat A S, Singh D J and Du M H 2009 Phys. Rev. B 79 075120
[5] Singh Y, Ellern A and Johnston D C 2009 Phys. Rev. B 79 094519
[6] Marty K, Christianson A D, Wang C H, Matsuda M, Cao H, VanBebber L H, Zarestky J L, Singh D J, Sefat A S and Lumsden M D 2011 Phys. Rev. B 83 060509
[7] Singh Y, Green M A, Huang Q, Kreyssig A, McQueeney R J, Johnston D C and Goldman A I 2009 Phys. Rev. B 80 100403
[8] Jayasekara W, Lee Y, Pandey A, Tucker G S, Sapkota A, Lamsal J, Calder S, Abernathy D L, Niedziela J L, Harmon B N, Kreyssig A, Vaknin D, Johnston D C, Goldman A I and McQueeney R J 2013 Phys. Rev. Lett. 111 157001
[9] Pandey A, Quirinale D G, Jayasekara W, Sapkota A, Kim M G, Dhaka R S, Lee Y, Heitmann T W, Stephens P W, Ogloblichev V, Kreyssig A, McQueeney R J, Goldman A I, Kaminski A, Harmon B N, Furukawa Y and Johnston D C 2013 Phys. Rev. B 88 014526
[10] Pfisterer M and Nagorsen G 1980 Chem. Sci. 35 703
[11] Pfisterer M and Nagorsen G 1983 Chem. Sci. 38 811
[12] Kreyssig A, Green M A, Lee Y, Samolyuk G D, Zajdel P, Lynn J W, Bud'ko S L, Torikachvili M S, Ni N, Nandi S, Leao J B, Poulton S J, Argyriou D N, Harmon B N, McQueeney R J, Canfield P C and Goldman A I 2008 Phys. Rev. B 78 184517
[13] Goldman A I, Kreyssig A, Prokes K, Pratt D K, Argyriou D N, Lynn J W, Nandi S, Kimber S A J, Chen Y, Lee Y B, Samolyuk G, Leao J B, Poulton S J, Bud'ko S L, Ni N, Canfield P C, Harmon B N and McQueeney R J 2009 Phys. Rev. B 79 024513
[14] Pratt D K, Zhao Y, Kimber S A J, Hiess A, Argyriou D N, Broholm C, Kreyssig A, Nandi S, Bud'ko S L, Ni N, Canfield P C, McQueeney R J and Goldman A I 2009 Phys. Rev. B 79 060510
[15] Soh J H, Tucker G S, Pratt D K, Abernathy D L, Stone M B, Ran S, Bud'ko S L, Canfield P C, Kreyssig A, McQueeney R J and Goldman A I 2013 Phys. Rev. Lett. 111 227002
[16] Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C and Luke G M 2009 Phys. Rev. B 79 020511(R)
[17] Ying J J, Yan Y J, Wang A F, Xiang Z J, Cheng P, Ye G J and Chen X H 2012 Phys. Rev. B 85 214414
[18] Zhang W, Nadeem K, Xiao H, Yang R, Xu B, Yang H and Qiu X G 2015 Phys. Rev. B 92 144416
[19] Quirinale D G, Anand V K, Kim M G, Pandey A, Huq A, Stephens P W, Heitmann T W, Kreyssig A, McQueeney R J, Johnston D C and Goldman A I 2013 Phys. Rev. B 88 174420
[20] Anand V K, Dhaka R S, Lee Y, Harmon B N, Kaminski A and Johnston D C 2014 Phys. Rev. B 89 214409
[21] Zhang A M, Liu K, Xiao J H, He J B, Wang D M, Chen G F, Normand B and Zhang Q M 2012 Phys. Rev. B 85 024518
[22] Wang X F, Wu T, Wu G, Chen H, Xie Y L, Ying J J, Yan Y J, Liu R H and Chen X H 2009 Phys. Rev. Lett. 102 117005
[23] Balkanski M, Wallis R F and Haro E 1983 Phys. Rev. B 28 1928
[24] Ying J J, Liang J C, Luo X G, Yan Y J, Wang A F, Cheng P, Ye G J, Ma J Q and Chen X H 2013 Europhys. Lett. 104 67005
[25] Choi K Y, Wulferding D, Lemmens P, Ni N, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 212503
[26] Chauviere L, Gallais Y, Cazayous M, Sacuto A, Measson M A, Colson D and Forget A 2009 Phys. Rev. B 80 094504
[27] Rahlenbeck M, Sun G L, Sun D L, Lin C T, Keimer B and Ulrich C 2009 Phys. Rev. B 80 064509
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[7] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[8] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[9] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[10] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[11] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[12] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[13] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[14] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[15] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!