Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 064202    DOI: 10.1088/1674-1056/25/6/064202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

Dan Wang(王丹)1,2, Jin-Ze Wu(武晋泽)1,2, Jun-Xiang Zhang (张俊香)1,2
1 The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor.

Keywords:  electromagnetically induced transparency      periodical refractive index modulation      transfer-matrix method      Bragg reflection  
Received:  03 February 2016      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.70.Qs (Photonic bandgap materials)  
  42.30.Rx (Phase retrieval)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

Corresponding Authors:  Jun-Xiang Zhang     E-mail:  junxiang@sxu.edu.cn

Cite this article: 

Dan Wang(王丹), Jin-Ze Wu(武晋泽), Jun-Xiang Zhang (张俊香) Optical control of light propagation in photonic crystal based on electromagnetically induced transparency 2016 Chin. Phys. B 25 064202

[1] Harris S E 1997 Phys. Today 50 36
[2] Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M and Zuo Z C 2015 Acta Phys. Sin. 64 0154208 (in Chinese)
[3] Xiao M, Li Y Q and Jin S Z 1995 Phys. Rev. Lett. 74 666
[4] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[5] Jing H, Liu X J, Ge M L and Zhan M S 2005 Phys. Rev. A 71 062336
[6] Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65 022314
[7] Julsgaard B, Sherson J, Cirac J I, Fiurášek J and Polzik E S 2004 Nature 432 482
[8] Schmidt H and Hawkins A R 2005 Appl. Phys. Lett. 86 032106
[9] Jing H, Özdemir S K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Sci. Rep. 5 9663
[10] Schnorrberger U, Thompson J D, Trotzky S, Pugatch R, Davidson N, Kuhr S and Bloch I 2009 Phys. Rev. Lett. 103 033003
[11] Jing H, Deng Y G and Zhang W P 2009 Phys. Rev. A 80 025601
[12] Jing H, Deng Y G and Meystre P 2011 Phys. Rev. A 83 063605
[13] Sakoda K. 2001 Optical properties of photonic crystals (Berlin: Springer), p. 2
[14] Chen S, Xie S Y, Yang Y P and Chen H 2003 Acta Phys. Sin. 52 0853 (in Chinese)
[15] Xing R, Xie S Y, Xu J P and Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese)
[16] Fan C Z, Wang J Q, He J N, Ding P and Liang E J 2013 Chin. Phys. B 22 074211
[17] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature 426 638
[18] Ling H Y, Li Y Q and Xiao M 1998 Phys. Rev. A 57 1338
[19] Bae I H, Moon H S, Kim M K, Lee L and Kim J B 2008 Appl. Opt. 47 4849
[20] Bae I H, Moon H S, Kim M K, Lee L and Kim J B 2010 Opt. Express 18 1389
[21] Zhang J X, Zhou H T, Wang D W and Zhu S Y 2011 Phys. Rev. A 83 053841
[22] Zhou H T, Wang D W, Wang D, Zhang J X and Zhu S Y 2011 Phys. Rev. A 84 053835
[23] Affolderbach C, Knappe S, Wynands R, Taïchenachev A V and Yudin V I 2002 Phys. Rev. A 65 043810
[24] Andy W. Brown and Min Xiao 2005 Opt. Lett. 30 699
[25] Zhou H T, Wang D, Guo M J, Gao J R and Zhang J X 2014 Chin. Phys. B 23 093204
[26] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[27] Born M and Wolf E 1999 Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge: Cambridge University Press, UK), pp. 66-67
[28] Deutsch I H, Spreeuw R J C, Rolston S L and Phillips W D 1995 Phys. Rev. A 52 1394
[29] Jackson J D 1975 Classical Electrodynamics, 2nd edn. (New York: Wiley), pp. 306-312
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[10] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[11] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[14] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[15] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
No Suggested Reading articles found!