ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical bistability and multistability via double dark resonance in graphene nanostructure |
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin |
Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran |
|
|
Abstract Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation. Therefore, on the basis of quantum optics and solid-material scientific principles, we show that optical bistability and multistability can be generated in graphene nanostructure under strong magnetic field. We also show that by adjusting the intensity and detuning of infrared laser field, the threshold intensity and hysteresis loop can be manipulated efficiently. The effects of the electronic cooperation parameter which are directly proportional to the electronic number density and the length of the graphene sample are discussed. Our proposed model may be useful for the nextgeneration all-optical systems and information processing based on nano scale devices.
|
Received: 17 December 2015
Revised: 19 January 2016
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
Corresponding Authors:
Seyyed Hossein Asadpour
E-mail: s.hosein.asadpour@gmail.com
|
Cite this article:
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin Optical bistability and multistability via double dark resonance in graphene nanostructure 2016 Chin. Phys. B 25 064201
|
[1] |
Wu Y and Yang X 2005 Phys. Rev. A 71 053806
|
[2] |
Harris S E 1997 Phys. Today 50 36
|
[3] |
Zhao Y, Zhao Y, Huang D and Wu C 1996 J. Opt. Soc. Am. B: Opt. Phys. 13 1614
|
[4] |
Hamedi H R, Asadpour S H and Sahrai M 2013 Optik 124 366
|
[5] |
Wang Z and Yu B 2014 Laser Phys. Lett. 11 035201
|
[6] |
Shui T, Wang Z and Yu B 2015 J. Opt. Soc. Am. B 32 210
|
[7] |
Walls D F, Zoller P and Steyn-Ross M L 1981 IEEE J. Quantum Electron 17 380
|
[8] |
Li J H 2007 Physica D 228 148
|
[9] |
Li J H, Lü X Y, Luo J M and Huang Q J 2006 Phys. Rev. A 74 053801
|
[10] |
Lü X Y, Li J H, Liu J B and Luo J M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5161
|
[11] |
Wang Z and Xu M 2009 Opt. Commun. 282 1574
|
[12] |
Gong S, Du S, Xu Z and Pan S 1996 Phys. Lett. A 222 237
|
[13] |
Hu X and Xu Z 2001 J. Opt. B: Quantum Semiclass. Opt. 3 35
|
[14] |
Cheng D C, Liu C P and Gong S Q 2006 Opt. Commun. 263 111
|
[15] |
Singh S, Rai J, Bowden C M and Postan A 1992 Phys. Rev. A 45 5160
|
[16] |
Antón M A and Calderón O G 2002 J. Opt. B: Quantum Semiclass. Opt. 4 91
|
[17] |
Antón M A, Calderón O G and Carrëno F 2003 Phys. Lett. A 311 297
|
[18] |
Wang H, Goorskey D J and Xiao M 2001 Phys. Rev. A 65 011801
|
[19] |
Joshi A and Xiao M 2003 Phys. Rev. Lett. 91 143904
|
[20] |
Brown A, Joshi A and Xiao M 2003 Appl. Phys. Lett. 83 1301
|
[21] |
Joshi A, Brown A, Wang H and Xiao M 2003 Phys. Rev. A 67 041801
|
[22] |
Joshi A, Yang W and Xiao M 2004 Phys. Rev. A 70 041802
|
[23] |
Chang H, Wu H, Xie C and Wang H 2004 Phys. Rev. Lett. 93 213901
|
[24] |
Joshi A, Yang W and Xiao M 2005 Opt. Lett. 30 905
|
[25] |
Joshi A and Xiao M 2006 Phys. Rev. A 74 013817
|
[26] |
Wu Y and Yang X 2004 Phys. Rev. A 70 053818
|
[27] |
Wu Y and Yang X 2007 Phys. Rev. B 76 054425
|
[28] |
Si L G, Yang W X, Lou X Y, Hao X Y and Yang X 2010 Phys. Rev. A 82 013836
|
[29] |
Yang W X, Hou J M, Lin Y Y and Lee R K 2009 Phys. Rev. A 79 033825
|
[30] |
Si L G, Yang W X and Yang X 2009 J. Opt. Soc. Am. B 26 478
|
[31] |
Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
|
[32] |
Asadpour S H and Eslami-Majd A 2012 J. Lumin. 132 1477
|
[33] |
Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
|
[34] |
Yang X X, Li Z W and Wu Y 2005 Phys. Lett. A 340 320
|
[35] |
Yang W X, Chen A X, Lee R K and Wu Y 2011 Phys. Rev. A 84 013835
|
[36] |
Yang X X, Li Z W and Wu Y 2005 Phys. Lett. A 340 320
|
[37] |
Yang W X, Chen A X, Si L G, Jiang K, Yang X and Lee R K 2010 Phys. Rev. A 81 023814
|
[38] |
Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838
|
[39] |
Chen A X 2011 Opt. Express 19 11944
|
[40] |
Asadpour S H, Sahrai M, Sadighi Bonabi R, Soltani A and Mahrami H 2011 Physica E 43 1759
|
[41] |
Wang Z and Yu B 2013 J. Appl. Phys. 113 113101
|
[42] |
Wang Z and Yu B 2014 Laser Phys. Lett. 11 115903
|
[43] |
Li J H 2007 Phys. Rev. B 75 155329
|
[44] |
Li J H and Yang X 2006 Eur. Phys. J. B 53 449
|
[45] |
Asadpour S H and Rahimpour Soleimani H 2014 Physica B 440 124
|
[46] |
Sadowski M L, Martinez G, Potemski M, Berger C and Heer W A 2006 Phys. Rev. Lett. 97 266405
|
[47] |
Abergel D S L and Fal'ko V I 2007 Phys. Rev. B 75 155430
|
[48] |
Ho Y H, Chiu Y H, Lin D H, Chang C P and Lin M F 2010 ACS Nano 4 1465
|
[49] |
Booshehri L G, Mielke C H, Rickel D G, Crooker S A, Zhang Q, Ren L, Haroz E H, Rustagi A, Stanton C J, Jin Z, Sun Z, Yan Z, Tour J M and Kono J 2012 Phys. Rev. B 85 205407
|
[50] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[51] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[52] |
Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
|
[53] |
Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D, Barra A L, Sprinkle M, Berger C, de Heer W A and Potemski M 2008 Phys. Rev. Lett. 101 267601
|
[54] |
Orlita M, Faugeras C, Schneider J M, Martinez G, Maude D K and Potemski M 2009 Phys. Rev. Lett. 102 166401
|
[55] |
Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48
|
[56] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[57] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A 2010 Nat. Photon. 4 611
|
[58] |
Yao X H and Belyanin A 2012 Phys. Rev. Lett. 108 255503
|
[59] |
Tokman M, Yao X H and Belyanin A 2013 Phys. Rev. Lett. 110 077404
|
[60] |
Yao X H and Belyanin A 2013 J. Phys.: Condens. Matter 25 054203
|
[61] |
Yao X H, Tokman M and Belyanin A 2014 Proc. SPIE 8980 89801A
|
[62] |
Wu S F, Mao L, Jones A M, Yao W, Zhang C W and Xu X D 2012 Nano Lett. 12 2032
|
[63] |
Ding C, Yu r, Li J H, Hao X and Wu Y 2014 J. Appl. Phys. 115 234301
|
[64] |
Ding C, Yu R, Li J H, Hao X and Wu Y 2014 Phys. Rev. A 90 043819
|
[65] |
Asadpour S H, Hamedi H and Rahimpour Soleimani H 2015 Laser Phys. Lett. 12 045202
|
[66] |
Asadpour S H, Hamedi H and Rahimpour Soleimani H 2015 Physica E 71 123
|
[67] |
Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P and Stormer H L 2007 Phys. Rev. Lett. 98 197403
|
[68] |
Nesterov M L, Bravo-Abad J, Yu Nikitin A, Garcia-Vidal F J and Martin-Moreno L 2013 Laser Photon. Rev. 7 L7
|
[69] |
Cheh J and Zhao H 2011 arXiv preprint: 1107.3696
|
[70] |
Lee K S, Lu T M and Zhang X C 2002 IEEE Circ. Dev. Mag. 18 23
|
[71] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[72] |
Guo G Y and Ebert H 1995 Phys. Rev. B 51 12633
|
[73] |
Kosevich Y A 1997 Solid State Commun. 104 321
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|