|
Abstract Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.
|
Received: 27 May 2022
Revised: 26 September 2022
Accepted manuscript online: 18 October 2022
|
PACS:
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
Fund: The author thanks Jochen Schirmer for valuable discussions. The author gratefully acknowledges financial support from the German Research Foundation (DFG Grant No. BA 1799/3-2) in the initial stage of this work and computational support by the state of Baden-Wurttemberg through bwHPC and the German Research Foundation through Grant No. INST 40/575-1 FUGG (bwUniCluster 2.0, bwForCluster/MLS&WISO 2.0/HELIX, and JUSTUS 2.0 cluster). |
Corresponding Authors:
Ioan Baldea
E-mail: ioan.baldea@pci.uni-heidelberg.de
|
Cite this article:
Ioan Baldea Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains 2022 Chin. Phys. B 31 123101
|
[1] McGuire B A 2018 The Astrophysical Journal Supplement Series 239 17 [2] Thaddeus P, Vrtilek J M and Gottlieb C A 1985 Astrophys. J. Lett. 299 L63 [3] Fan Q and Pfeiffer G V 1989 Chem. Phys. Lett. 162 472 [4] Maier G, Reisenauer H P, Schwab W, Carsky P, Spirko V, Hess B A and Schaad L J 1989 J. Chem. Phys. 91 4763 [5] Cernicharo J, Gottlieb C A, Guelin M, Killian T C, Paubert G, Thaddeus P and Vrtilek J M 1991 Astrophys. J. Lett. 368 L39 [6] Cernicharo J, Gottlieb C A, Guelin M, Killian T C, Thaddeus P and Vrtilek J M 1991 Astrophys. J. Lett. 368 L43 [7] Gottlieb C A, Killian T C, Thaddeus P, Botschwina P, Flügge J and Oswald M 1993 J. Chem. Phys. 98 4478 [8] Haas S, Winnewisser G, Yamada K, Matsumura K and Kawaguchi K 1994 Journal of Molecular Spectroscopy 167 176 [9] Natterer J, Koch W, Schröder D, Goldberg N and Schwarz H 1994 Chem. Phys. Lett. 229 429 [10] Fulara J, Freivogel P, Forney D and Maier J P 1995 J. Chem. Phys. 103 8805 [11] McCarthy M C, Gottlieb C A, Thaddeus P, Horn M and Botschwina P 1995 J. Chem. Phys. 103 7820 [12] Seburg R A, DePinto J T, Patterson E V and McMahon R J 1995 J. Am. Chem. Soc. 117 835 [13] Botschwina P 1996 Chem. Phys. Lett. 259 627 [14] Seburg R A, Patterson E V, Stanton J F and McMahon R J 1997 J. Am. Chem. Soc. 119 5847 [15] Seburg R A, McMahon R J, Stanton J F and Gauss J 1997 J. Am. Chem. Soc. 119 10838 [16] Blanksby S J, Dua S, Bowie J H, Schröder D and Schwarz H 1998 J. Phys. Chem. A 102 9949 [17] Stanton J F and Byun K 1999Mol. Phys. 96 505 [18] Dua S, Blanksby S J and Bowie J H 2000 J. Phys. Chem. A 104 77 [19] Ball C D, McCarthy M C and Thaddeus P 2000 J. Chem. Phys. 112 10149 [20] Pino T, Ding H, Güuthe F and Maier J P 2001 J. Chem. Phys. 114 2208 [21] Horny L, Petraco N D K, Pak C and Schaefer H F 2002 J. Am. Chem. Soc. 124 5861 [22] Horny L, Petraco N D K and Schaefer H F 2002 J. Am. Chem. Soc. 124 14716 [23] Ding H, Schmidt T W, Pino T, Boguslavskiy A E, Güthe F and Maier J P 2003 J. Chem. Phys. 119 814 [24] Achkasova E, Araki M, Denisov A and Maier J P 2006 Journal of Molecular Spectroscopy 237 70 [25] Botschwina P, Oswald R and Knizia G E A 2009 Z. Phys. Chem. 223 447 [26] Vázquez J, Harding M E, Gauss J and Stanton J F 2009 J. Phys. Chem. A 113 12447 [27] Kaiser R I, Sun B J, Lin H M, Chang A H H, Mebel A M, Kostko O and Ahmed M 2010 Astrophys. J. 719 1884 [28] Steinbauer M, Lang M, Fischer I, de Miranda B K C, Romanzin C and Alcaraz C 2011 Phys. Chem. Chem. Phys. 13 17956 [29] Neiss C, Trushin E and Görling A 2014 ChemPhysChem 15 2497 [30] Osborn D L, Vogelhuber K M, Wren S W, Miller E M, Lu Y J, Case A S, Sheps L, McMahon R J, Stanton J F, Harding L B, Ruscic B and Lineberger W C 2014 J. Am. Chem. Soc. 136 10361 [31] Steglich M, Fulara J, Maity S, Nagy A and Maier J P 2015 J. Chem. Phys. 142 244311 [32] He C, Galimova G R, Luo Y, Zhao L, Eckhardt A K, Sun R, Mebel A M and Kaiser R I 2020 Proc. Nat. Acad. Sci. USA 117 30142 [33] Doney K D, Zhao D, Stanton J F and Linnartz H 2018 Phys. Chem. Chem. Phys. 20 5501 [34] Bâldea I 2019 ACS Earth Space Chem. 3 863 [35] Bâldea I 2019 Adv. Theor. Simul. 2 1900084 [36] Ishigaki Y, Shimajiri T, Takeda T, Katoono R and Suzuki T 2018 Chem. 4 795 [37] Pauling L 1947 J. Am. Chem. Soc. 69 542 [38] Dewar M and Schmeising H 1959 Tetrahedron 5 166 [39] Carey F A and Sundberg R J 2007 Advanced Organic Chemistry. Part A: Structure and Mechanism fifth edition (Springer Science+Business Media LLC) [40] Bâldea I 2020 ACS Earth Space Chem. 4 434 [41] Bâldea I 2020 Mon. Not. R. Astron. Soc. 493 2506 [42] Bâldea I 2020 Mon. Not. R. Astron. Soc. 498 4316 [43] Bâldea I 2022 Molecules 27 3100 [44] Bâldea I 2022 Adv. Theor. Simul. 5 2200244 [45] Reed A E, Weinstock R B and Weinhold F 1985 J. Chem. Phys. 83 735 [46] Wiberg K B 1968 Tetrahedron 24 1083 [47] Mayer I 2007 J. Comput. Chem. 28 204 [48] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian, inc., wallingford ct, gaussian 16, revision b.01 www.gaussian.com [49] Bâldea I 2012 Europhys. Lett. 99 47002 [50] Bâldea I 2014 Faraday Discuss. 174 37 [51] Xie Z, Bâldea I and Frisbie C D 2018 Chem. Sci. 9 4456 [52] Xie Z, Bâldea I, Haugstad G and Frisbie C D 2019 J. Am. Chem. Soc. 141 497 [53] Xie Z, Bâldea I and Frisbie C D 2019 J. Am. Chem. Soc. 141 18182 [54] Watts J D, Gauss J and Bartlett R J 1993 J. Chem. Phys. 98 8718 [55] Dunning T H 1989 J. Chem. Phys. 90 1007 [56] Kendall R A, Jr T H D and Harrison R J 1992 J. Chem. Phys. 96 6796 [57] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358 [58] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785 [59] Becke A D 1988 Phys. Rev. A 38 3098 [60] Becke A D 1993 J. Chem. Phys. 98 1372 [61] Stephens P J, Devlin J F, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623 [62] Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A and Mantzaris J 1988 J. Chem. Phys. 89 2193 [63] Petersson G A and Al-Laham M A 1991 J. Chem. Phys. 94 6081 [64] Curtiss L A, Redfern P C and Raghavachari K 2007 J. Chem. Phys. 126 084108 [65] Curtiss L A, Redfern P C and Raghavachari K 2007 J. Chem. Phys. 127 124105 [66] Barnes E C, Petersson G A, Montgomery J A, Frisch M J and Martin J M L 2009 J. Chem. Theor. Comput. 5 2687 [67] Ochterski J W, Petersson G A and Montgomery J A 1996 J. Chem. Phys. 104 2598 [68] Montgomery J A, Frisch M J, Ochterski J W and Petersson G A 1999 J. Chem. Phys. 110 2822 [69] Montgomery J A, Frisch M J, Ochterski J W and Petersson G A 2000 J. Chem. Phys. 112 6532 [70] Bâldea I, Köppel H and Wenzel W 2013 Phys. Chem. Chem. Phys. 15 1918 [71] Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C and Weinhold F 2012 Nbo code version 6.0 [72] Kokalj A 2003 Comput. Mater. Sci. 28 155 [73] Allouche A R 2011 J. Comput. Chem. 32 174 [74] Botschwina P and Oswald R 2008 J. Chem. Phys. 129 044305 [75] Thimmakondu V S, Ulusoy I, Wilson A K and Karton A 2019 J. Phys. Chem. A 123 6618 [76] Lam C S and Lau K C 2021 J. Phys. Chem. A 125 5385 [77] Reddy S N and Mahapatra S 2012 Chem. Phys. 403 1 [78] Bâldea I 2017 Phys. Chem. Chem. Phys. 19 30842 [79] 2007 J. Comp. Chem. 28 1 [80] Coulson C A 1939 Proc. Roy. Soc. London A 169 413 [81] Mulliken R S, Rieke C A and Brown W G 1941 J. Am. Chem. Soc. 63 41 [82] Zhan C G and Iwata S 1996 J. Chem. Phys. 104 9058 [83] Carelli F, Satta M, Grassi T and Gianturco F A 2013 Astrophys. J. 774 97 [84] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158 [85] Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215 [86] Bâldea I 2022 Molecules 27 5036 [87] Broten N W, Oka T, Avery L W, MacLeod J M and Kroto H W 1978 Astrophys. J. Lett. 223 L105 [88] Bâldea I 2014 J. Phys. Chem. C 118 8676 [89] Bâldea I, Köppel H and Cederbaum L S 2004 Phys. Rev. B 69 075307 [90] Sommerfeld T and Knecht S 2005 Eur. Phys. J. D 35 207 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|