Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116804    DOI: 10.1088/1674-1056/aba279
Special Issue: SPECIAL TOPIC — Water at molecular level
TOPICAL REVIEW—Water at molecular level Prev   Next  

Water on surfaces from first-principles molecular dynamics

Peiwei You(游佩桅)1,3, Jiyu Xu(徐纪玉)1,3, Cui Zhang(张萃)1,2, †, and Sheng Meng(孟胜)1,2,3,4$
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 Songshan Lake Materials Laboratory, Dongguan 523808, China
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

Water is ubiquitous and so is its presence in the proximity of surfaces. To determine and control the properties of interfacial water molecules at nanoscale is essential for its successful applications in environmental and energy-related fields. It is very challenging to explore the atomic structure and electronic properties of water under various conditions, especially at the surfaces. Here we review recent progress and open challenges in describing physicochemical properties of water on surfaces for solar water splitting, water corrosion, and desalination using first-principles approaches, and highlight the key role of these methods in understanding the complex electronic and dynamic interplay between water and surfaces. We aim at showing the importance of unraveling fundamental mechanisms and providing physical insights into the behavior of water on surfaces, in order to pave the way to water-related material design.

Keywords:  first-principles molecular dynamics      water at surfaces      reaction mechanism  
Received:  25 May 2020      Revised:  25 May 2020      Accepted manuscript online:  03 July 2020
Fund: the National Key Basic Research Program of China (Grant Nos. 2016YFA0300902 and 2015CB921001), the National Natural Science Foundation of China (Grant Nos. 11974400, 91850120, and 11774396), and Strategic Priority Research Program B of the Chinese Academy of Sciences (Grant No. XDB070301).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜)$ Water on surfaces from first-principles molecular dynamics 2020 Chin. Phys. B 29 116804

Fig. 1.  

(a) Snapshot of the Au20 cluster in water, where yellow, red, and grey spheres represent gold, oxygen, and hydrogen atoms, respectively. The arrow denotes polarization direction of the laser field. (b) Time evolution of the laser field with field strength Emax = 2.3 V/Å and frequency ℏ ω = 2.81 eV. Under this laser pulse, time-evolved O–H bond lengths dOH of all water molecules with (c) and without (d) Au20 cluster are shown. (e) Atomic configurations at time t = 0, 16 fs, 18 fs, and 21 fs. Reprinted with permission from Ref. [32].

Fig. 2.  

(a) Configuration of the initiation step of water trimer dissociation on the PuO2 (110) surface. (b) Electron density difference contour of the configuration shown in (a). Reprinted with permission from Ref. [63].

Fig. 3.  

(a) The atomistic structure of graphdiyne. (b) The water flow across graphdiyne versus temperature and pressure. (c) the trajectories of proton diffusion at the water–graphdiyne interface. (d) The free energy barrier for transmembrane (TM) proton transfer and proton transfer in bulk water. The dash line indicates the kBT at 300 K. Reprinted with permission from Ref. [84].

Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H 2017 Nature 550 380 DOI: 10.1038/nature24044
Shi G, Chen L, Yang Y, Li D, Qian Z, Liang S, Yan L, Li L H, Wu M, Fang H 2018 Nat. Chem. 10 776 DOI: 10.1038/s41557-018-0061-4
Velasco-Velez J J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D, Salmeron M 2014 Science 346 831 DOI: 10.1126/science.1259437
Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321 DOI: 10.1126/science.aaf2042
Zou X, Zhang Y 2015 Chem. Soc. Rev. 44 5148 DOI: 10.1039/C4CS00448E
Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253 DOI: 10.1039/B800489G
Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851 DOI: 10.1021/jp070911w
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76 DOI: 10.1038/nmat2317
Wang Y, Suzuki H, Xie J, Tomita O, Martin D J, Higashi M, Kong D, Abe R, Tang J 2018 Chem. Rev. 118 5201 DOI: 10.1021/acs.chemrev.7b00286
Buelke C, Alshami A, Casler J, Lewis J, Al-Sayaghi M, Hickner M A 2018 Desalination 448 113 DOI: 10.1016/j.desal.2018.09.008
Pendergast M M, Hoek E M V 2011 Energy Environ. Sci. 4 1946 DOI: 10.1039/c0ee00541j
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M 2008 Nature 452 301 DOI: 10.1038/nature06599
Elimelech M, Phillip W A 2011 Science 333 712 DOI: 10.1126/science.1200488
Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864 DOI: 10.1103/PhysRev.136.B864
Kohn W, Sham L J 1965 Phys. Rev. 140 A1133 DOI: 10.1103/PhysRev.140.A1133
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
Schwegler E, Grossman J C, Gygi F, Galli G 2004 J. Chem. Phys. 121 5400 DOI: 10.1063/1.1782074
Grossman J C, Schwegler E, Draeger E W, Gygi F, Galli G 2004 J. Chem. Phys. 120 300 DOI: 10.1063/1.1630560
Burke K 2012 J. Chem. Phys. 136 150901 DOI: 10.1063/1.4704546
Zhang C, Donadio D, Gygi F, Galli G 2011 J. Chem. Theory Comput. 7 1443 DOI: 10.1021/ct2000952
Wang J, Roman-Perez G, Soler J M, Artacho E, Fernandez-Serra M V 2011 J. Chem. Phys. 134 024516 DOI: 10.1063/1.3521268
Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983 DOI: 10.1021/jp212558p
Singh A K, Mathew K, Zhuang H L, Hennig R G 2015 J. Phys. Chem. Lett. 6 1087 DOI: 10.1021/jz502646d
Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402 DOI: 10.1103/PhysRevLett.115.036402
Sun J, Remsing R C, Zhang Y, Sun Z, Ruzsinszky A, Peng H, Yang Z, Paul A, Waghmare U, Wu X, Klein M L, Perdew J P 2016 Nat. Chem. 8 831 DOI: 10.1038/nchem.2535
Liechtenstein A I, Anisimov V V, Zaanen J 1995 Phys. Rev. B 52 R5467 DOI: 10.1103/PhysRevB.52.R5467
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505 DOI: 10.1103/PhysRevB.57.1505
C. Tully J 1998 Faraday Discuss. 110 407 DOI: 10.1039/a801824c
Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110 DOI: 10.1063/1.2960628
Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911 DOI: 10.1038/nmat3151
Yan L, Meng S 2017 Sci. China-Phys. Mech. Astron. 60 027032 DOI: 10.1007/s11433-016-0442-6
Yan L, Xu J, Wang F, Meng S 2018 J. Phys. Chem. Lett. 9 63 DOI: 10.1021/acs.jpclett.7b02957
Gomes Silva C, Juárez R, Marino T, Molinari R, García H 2011 J. Am. Chem. Soc. 133 595 DOI: 10.1021/ja1086358
Awate S V, Deshpande S S, Rakesh K, Dhanasekaran P, Gupta N M 2011 Phys. Chem. Chem. Phys. 13 11329 DOI: 10.1039/c1cp21194c
Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155 DOI: 10.1021/acs.nanolett.5b02453
Kang J H, Kim D S, Park Q H 2009 Phys. Rev. Lett. 102 093906 DOI: 10.1103/PhysRevLett.102.093906
Yan L, Wang F, Meng S 2016 ACS Nano 10 5452 DOI: 10.1021/acsnano.6b01840
Rini M, Magnes B Z, Pines E, Nibbering E T J 2003 Science 301 349 DOI: 10.1126/science.1085762
Xu Y, Kraft M, Xu R 2016 Chem. Soc. Rev. 45 3039 DOI: 10.1039/C5CS00729A
Yeh T F, Syu J M, Cheng C, Chang T H, Teng H 2010 Adv. Funct. Mater. 20 2255 DOI: 10.1002/adfm.v20:14
Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M, Wang X 2015 Nat. Commun. 6 7698 DOI: 10.1038/ncomms8698
Dai L, Xue Y, Qu L, Choi H J, Baek J B 2015 Chem. Rev. 115 4823 DOI: 10.1021/cr5003563
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z 2015 Science 347 970 DOI: 10.1126/science.aaa3145
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z 2017 J. Am. Chem. Soc. 139 18093 DOI: 10.1021/jacs.7b10817
Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H M 2010 J. Am. Chem. Soc. 132 11642 DOI: 10.1021/ja103798k
Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X 2011 Energy Environ. Sci. 4 675 DOI: 10.1039/C0EE00418A
Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y 2016 Adv. Mater. 28 2427 DOI: 10.1002/adma.201505281
Zhang L, Long R, Zhang Y, Duan D, Xiong Y, Zhang Y, Bi Y 2020 Angew. Chem. Int. Ed. 59 6224 DOI: 10.1002/anie.v59.15
Wu H Z, Liu L M, Zhao S J 2014 Phys. Chem. Chem. Phys. 16 3299 DOI: 10.1039/c3cp54333a
Aspera S M, David M, Kasai H 2010 Jpn. J. Appl. Phys. 49 115703 DOI: 10.1143/JJAP.49.115703
Wu H Z, Liu L M, Zhao S J 2015 Appl. Surf. Sci. 358 363 DOI: 10.1016/j.apsusc.2015.06.187
Steinmann S N, Melissen S T A G, Le Bahers T, Sautet P 2017 J. Mater. Chem. A 5 5115 DOI: 10.1039/C6TA08939A
You P W, Chen D Q, Lian C, Zhang C, Meng S 2020 WIREs Comput Mol Sci. e1492 DOI: 10.1002/wcms.1492
You P W, Lian C, Xu J Y, Zhang C, Meng S 2020 submitted
Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624 DOI: 10.1039/C8NR04505D
Haschke J M, Allen T H, Martz J C 1998 J. Alloys Compd. 271–273 211 DOI: 10.1021/j100624a003
Stakebake J L 1973 The Journal of Physical Chemislry 77 581 DOI: 10.1021/j100624a003
Paffett M T, Kelly D, Joyce S A, Morris J, Veirs K 2003 J. Nucl. Mater. 322 45 DOI: 10.1016/S0022-3115(03)00315-5
Wu X, Ray A K 2002 Phys. Rev. B 65 085403 DOI: 10.1103/PhysRevB.65.085403
Jomard G, Bottin F, Geneste G 2014 J. Nucl. Mater. 451 28 DOI: 10.1016/j.jnucmat.2014.03.012
Tegner B E, Molinari M, Kerridge A, Parker S C, Kaltsoyannis N 2017 J. Phys. Chem. C 121 1675 DOI: 10.1021/acs.jpcc.6b10986
Wellington J P W, Kerridge A, Austin J, Kaltsoyannis N 2016 J. Nucl. Mater. 482 124 DOI: 10.1016/j.jnucmat.2016.10.005
Zhang C, Yang Y, Zhang P 2017 J. Phys. Chem. C 122 371 DOI: 10.1021/acs.jpcc.7b08864
Zhang C, Yang Y, Zhang P 2019 Sci. China-Phys. Mech. Astron. 62 107002 DOI: 10.1007/s11433-018-9369-4
Petit L, Svane A, Szotek Z, Temmerman W M, Stocks G M 2010 Phys. Rev. B 81 045108 DOI: 10.1103/PhysRevB.81.045108
Keller C 1973 Comprehensive Inorganic Chemistry Bailar J C et al. Oxford Pergamon 219 276
Wang X X, Wang S, Zhang C, Yang Y, Zhang P 2019 J. Phys.: Condens. Matter 31 265001 DOI: 10.1088/1361-648X/ab1468
Cheng Y, Ying Y, Japip S, Jiang S D, Chung T S, Zhang S, Zhao D 2018 Adv. Mater. 30 1870355 DOI: 10.1002/adma.v30.47
Prozorovska L, Kidambi P R 2018 Adv. Mater. 30 e1801179 DOI: 10.1002/adma.201801179
Wang L, Boutilier M S H, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R 2017 Nat. Nanotechnol. 12 509 DOI: 10.1038/nnano.2017.72
Achtyl J L, Unocic R R, Xu L, Cai Y, Raju M, Zhang W, Sacci R L, Vlassiouk I V, Fulvio P F, Ganesh P, Wesolowski D J, Dai S, van Duin A C, Neurock M, Geiger F M 2015 Nat. Commun. 6 6539 DOI: 10.1038/ncomms7539
Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459 DOI: 10.1038/nnano.2015.37
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K 2012 Science 335 442 DOI: 10.1126/science.1211694
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752 DOI: 10.1126/science.1245711
Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Chem. Commun. 46 3256 DOI: 10.1039/b922733d
Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y 2017 Acc. Chem. Res. 50 2470 DOI: 10.1021/acs.accounts.7b00205
Gao X, Liu H, Wang D, Zhang J 2019 Chem. Soc. Rev. 48 908 DOI: 10.1039/C8CS00773J
Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y 2018 Chem. Rev. 118 7744 DOI: 10.1021/acs.chemrev.8b00288
Li Y, Xu L, Liu H, Li Y 2014 Chem. Soc. Rev. 43 2572 DOI: 10.1039/c3cs60388a
Xue M, Qiu H, Guo W 2013 Nanotechnology 24 505720 DOI: 10.1088/0957-4484/24/50/505720
Zhu C, Li H, Zeng X C, Wang E G, Meng S 2013 Sci. Rep. 3 3163 DOI: 10.1038/srep03163
Bartolomei M, Carmona-Novillo E, Hernandez M I, Campos-Martinez J, Pirani F, Giorgi G, Yamashita K 2014 J. Phys. Chem. Lett. 5 751 DOI: 10.1021/jz4026563
Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2018 Nano Res. 12 587 DOI: 10.1007/s12274-018-2258-7
Xu J, Jiang H, Shen Y, Li X Z, Wang E G, Meng S 2019 Nat. Commun. 10 3971 DOI: 10.1038/s41467-019-11899-y
Ochi S, Kamishima O, Mizusaki J, Kawamura J 2009 Solid State Ionics 180 580 DOI: 10.1016/j.ssi.2008.12.035
[1] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[2] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[3] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[6] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[7] Density function theoretical study on the complex involved in Th atom-activated C-C bond in C2H6
Qing-Qing Wang(王青青), Peng Li(李鹏), Tao Gao(高涛), Hong-Yan Wang(王红艳), Bing-Yun Ao(敖冰云). Chin. Phys. B, 2016, 25(6): 063102.
[8] Growth mechanism of atomic-layer-deposited TiAlC metal gatebased on TiCl4 and TMA precursors
Jinjuan Xiang(项金娟), Yuqiang Ding(丁玉强), Liyong Du(杜立永), Junfeng Li(李俊峰),Wenwu Wang(王文武), Chao Zhao(赵超). Chin. Phys. B, 2016, 25(3): 037308.
No Suggested Reading articles found!