Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058402    DOI: 10.1088/1674-1056/25/5/058402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

H M Al-Khateeb1, M K Alqadi1, F Y Alzoubi1, B Albiss1, M K Hasan (Qaseer)1, N Y Ayoub2
1. Department of Physics, Jordan University of Science and Technology, Irbid, Jordan;
2. School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
Abstract  The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
Keywords:  lateral and levitation forces      Meissner effect      dipole-dipole interaction model      superconductor  
Received:  04 November 2015      Revised:  28 January 2016      Accepted manuscript online: 
PACS:  84.71.Ba (Superconducting magnets; magnetic levitation devices)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Corresponding Authors:  H M Al-Khateeb     E-mail:  hkhateeb@just.edu.jo

Cite this article: 

H M Al-Khateeb, M K Alqadi, F Y Alzoubi, B Albiss, M K Hasan (Qaseer), N Y Ayoub Levitation and lateral forces between a point magnetic dipole and a superconducting sphere 2016 Chin. Phys. B 25 058402

[1] Moon F C, Yanoviak M M and Ware R 1988 Appl. Phys. Lett. 52 1534
[2] Chang P Z, Moon F C, Hull J R and Mulcahy T M 1990 J. Appl. Phys. 67 4358
[3] Yang T H, Johansen, Bratsberg H, Bhatnagar A and Skjeltorp A T 1992 Physica C 197 136
[4] Yang Z J and Hull J R 1996 J. Appl. Phys. 79 3318
[5] Liu J, Wang Q L and Li X 2011 IEEE Trans. Appl. Supercond. 21 1502
[6] Cui C and Wang Q L 2011 IEEE Trans. Appl. Supercond. 21 3470
[7] He C, Wang Q L, Li C, Yan L and Dai Y 2007 IEEE Trans. Appl. Supercond. 17 2174
[8] Lugo J and Sosa V 1999 Physica C 324 9
[9] Alqadi M K 2015 Chin. Phys. B 24 118404
[10] Coffey M W 2000 J. Supercond. Nov. Magn. 13 381
[11] Yang Z J 1998 Solid State Commun. 107 745
[12] Al-Khateeb H M, Alqadi M K, Alzoubi F Y and Ayoub NY 2008 J. Supercond. Nov. Magn. 21 93
[13] Al-Khateeb H M, Albiss B A, Alzoubi F Y, Alqadi M K, Hasan (Qaseer) M K and Ayoub N Y 2008 IEEE Trans. Appl. Supercond. 18 14
[14] Alqadi M K, Al-Khateeb H M, Alzoubi F Y and Ayoub N Y 2007 Chin. Phys. Lett. 24 2664
[15] Alzoubi F Y, Al-Khateeb H M, Alqadi M K and Ayoub N Y 2006 Chin. Phys. Lett. 23 1641
[16] Alqadi M K and Alzoubi F Y 2014 Chin. Phys. B 23 087506
[17] Yang Z J, Johansen T H, Bratsberg H, Helgesen G, Bhatnagar A and Skjeltorp A T 1989 Physica C 160 461
[18] Davis L C, Logothetis E M and Soltis R E 1988 J. Appl. Phys. 64 4212
[19] Al-Khateeb H M, Alqadi M K, Alzoubi F Y and Ayoub N Y 2007 Chin. Phys. Lett. 24 2700
[20] Cansiz A, Hull J R and Gundogdu O 2005 Supercond. Sci. Technol. 18 990
[21] Teshima H, Sawamura M, Morita M and Tsuchimota M 1997 Cryogenics 37 505
[22] Cruz A and Badia A 2002 Physica C 321 356
[23] Wang Q 2013 Practical Design of Magnetostatic Structure using Numerical Methods (New York: Wiley)
[24] Camacho D, Mora J, Fontcuberta J and Obradors X 1997 J. Appl. Phys. 82 1461
[25] Sanchez A and Navau C 1997 Physica C 275 322
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[11] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[14] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[15] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
No Suggested Reading articles found!