Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058501    DOI: 10.1088/1674-1056/25/5/058501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield

Yuhao Liu(刘宇浩)1, Mengmeng Li(李蒙蒙)1, Dong Lan(兰栋)1, Guangming Xue(薛光明)1, Xinsheng Tan(谭新生)1, Haifeng Yu(于海峰)1,2, Yang Yu(于扬)1,2
1. National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2. Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns.

Keywords:  qubit relaxation      superconducting qubit      infrared filter      infrared shield  
Received:  25 December 2015      Revised:  18 January 2016      Accepted manuscript online: 
PACS:  85.25.Cp (Josephson devices)  
  03.67.Lx (Quantum computation architectures and implementations)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).

Corresponding Authors:  Xinsheng Tan, Haifeng Yu     E-mail:  txs.nju@gmail.com;hfyu@nju.edu.cn

Cite this article: 

Yuhao Liu(刘宇浩), Mengmeng Li(李蒙蒙), Dong Lan(兰栋), Guangming Xue(薛光明), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬) Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield 2016 Chin. Phys. B 25 058501

[1] Clarke J and Wilhelm F K 2008 Nature 453 1031
[2] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[3] Zhong Y, Li C, Wang H and Chen Y 2013 Chin. Phys. B 22 110313
[4] Zhu S and Wang Z 2005 Physics 34 0
[5] Dial O, McClure D T, Poletto S, Gambetta J M, Abraham D W, Chow J M and Steffen M 2015 arXiv:1509.03859v1 [quant-ph]
[6] Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W and Yu C C 2005 Phys. Rev. Lett. 95 210503
[7] Martinis J M, Ansmann M and Aumentado J 2009 Phys. Rev. Lett. 103 097002
[8] Shaw M D, Lutchyn R M, Delsing P and Echternach P M 2008 Phys. Rev. B 78 024503
[9] Barends R, Wenner J, Lenander M, Chen Y, Bialczak R C, Kelly J, Lucero E, O'Malley P, Mariantoni M, Sank D, Wang H, White T C, Yin Y, Zhao J, Cleland A N, Martinis J M and Baselmans J J A 2011 Appl. Phys. Lett. 99 113507
[10] de Visser P J, Baselmans J J A, Diener P, Yates S J C, Endo A and Klapwijk T M 2011 Phys. Rev. Lett. 106 167004
[11] Rothwarf A and Taylor B N 1967 Phys. Rev. Lett. 19 27
[12] Lukashenko A and Ustinov A V 2008 Rev. Sci. Instrum. 79 014701
[13] Santavicca D F and Prober D E 2008 Meas. Sci. Technol. 19 087001
[14] Fang M 2015 Development of Hardware for Scaling Up Superconducting Qubits and Simulation of Quantum Chaos (Bachelor Dissertation) (Santa Barbara: University of California)
[15] Geerlings K L 2013 Improving Coherence of Superconducting Qubits and Resonators (Ph.D. Dissertation) (New Haven: Yale University)
[16] Pozar D M 2005 Microwave Engineering (3rd Edn.) (Beijing: Publishing House of Electronics Industry) p. 47, p. 53
[17] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[18] Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L and Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601
[19] Bishop L S, Ginossar E and Girvin S M 2010 Phys. Rev. Lett. 105 100505
[20] Boissonneault M, Gambetta J M and Blais A 2010 Phys. Rev. Lett. 105 100504
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[4] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[5] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[6] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[7] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[8] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[9] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[10] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[11] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[12] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[13] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[14] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[15] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
No Suggested Reading articles found!