ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide |
Yue-Yang Yu(于跃洋)1, Xiao-Qiang Sun(孙小强)1,2, Lan-Ting Ji(姬兰婷)1, Guo-Bing He(何国冰)1, Xi-Bin Wang(王希斌)1,2, Yun-Ji Yi(衣云骥)1,2, Chang-Ming Chen(陈长鸣)1,2, Fei Wang(王菲)1,2, Da-Ming Zhang(张大明)1,2 |
1. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; 2. Jilin Provincial Engineering Laboratory on Polymer Planar Lightwave Circuit, Changchun 130012, China |
|
|
Abstract Visible light variable optical attenuators (VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber (POF) transmission systems. In this paper, a polymer/silica hybrid waveguide thermo-optic attenuator based on multimode interference (MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time-stability measurement results prove its working reliability.
|
Received: 12 September 2015
Revised: 18 December 2015
Accepted manuscript online:
|
PACS:
|
41.20.-q
|
(Applied classical electromagnetism)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.25.-p
|
(Wave optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205032, 61475061, 61405070, 61177027, 61275033, and 61261130586) and the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519006JH). |
Corresponding Authors:
Xiao-Qiang Sun
E-mail: sunxq@jlu.edu.cn
|
Cite this article:
Yue-Yang Yu(于跃洋), Xiao-Qiang Sun(孙小强), Lan-Ting Ji(姬兰婷), Guo-Bing He(何国冰), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Chang-Ming Chen(陈长鸣), Fei Wang(王菲), Da-Ming Zhang(张大明) The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide 2016 Chin. Phys. B 25 054101
|
[1] |
Masatoshi Y, Akari K, Satoru K, Manabu K and Yukitoshi I 2005 Opt. Lett. 30 2206
|
[2] |
Ton K, Henrie H B, Eduardo O M, Philippe G and Eduward T 2011 Opt. Express 19 B399
|
[3] |
Moellers I, Jager D, Gaudino R, Nocivelli A, Kragl H, Ziemann O, Weber N, Koonen T, Lezzi C, Bluschke A and Randel S 2009 IEEE Commun. Mag. 47 58
|
[4] |
Wang Y G, Wang Y Q and Chi N 2014 Photon. Res. 2 138
|
[5] |
Clemens V, Christoph E, Sönke T, Alfred L, Jens M, Fabian K, Bernhard S, Thomas H, Georg B, Adrian A, Teresa L, Jelena R and Uwe S 2012 Semiconductor Lasers, Belyanin A A Ed., Proc. SPIE 8277 82770K
|
[6] |
Kruglov R, Vinogradov J, Ziemann O, Loquai S and Bunge C A 2012 IEEE Photon. Technol. Lett. 24 1632
|
[7] |
Reilly M A, Coleman B, Pun E Y B, Penty R V, White I H, Ramon M, Xia R and Bradley D D C 2005 Appl. Phys. Lett. 87 231116
|
[8] |
Noh Y O, Lee C H, Kim J M, Hwang W Y, Won Y H, Lee H J, Han S G and Oh M C 2004 Opt. Commun. 242 533
|
[9] |
Li Y T, Yu J Z, Chen Y Y, Sun F and Chen S W 2007 Chin. Phys. Lett. 24 465
|
[10] |
He Z H, Chen C P, Zhu J L, Yuan Y C, Li Y, Hu W, Li X, Li H J, Lu J G and Su Y K 2015 Chin. Phys. B 24 064203
|
[11] |
Anartz U, Robert B and Deepak U 2013 J. Microelectromech. S 22 1229
|
[12] |
Huang C, Deng P, Zhao S and Chen H Q 2011 Chin. Phys. B 20 084209
|
[13] |
Shin J U, Han Y T, Han S P, Park S H, Baek Y, Noh Y O and Park K H 2009 ETRI J. 31 770
|
[14] |
Garner S M and Caracci S 2002 IEEE Photonic. Technol. Lett. 14 1560
|
[15] |
Xiao G Z, Zhang Z Y and Grover C P 2004 IEEE Photon. Technol. Lett. 16 2511
|
[16] |
Jiang X Q, Li X, Zhou H F and Yang J Y 2005 IEEE Photon. Techol. Lett. 17 2361
|
[17] |
Zhao X L, Yue Y B, Liu T, Sun J, Wang X B, Sun X Q, Chen C M and Zhang D M 2015 Chin. Phys. B 24 044101
|
[18] |
Sun X Q, Li X D, Chen C M, Zhang K, Meng J, Wang X B, Yang T F, Zhang D M, Wang F and Xie Z Y 2012 Thin Solid Films 520 5946
|
[19] |
Sun Y L and Pan J X 2007 Acta Phys. Sin. 56 3300 (in Chinese)
|
[20] |
Ibrahim M H, Lee S Y, Chin M K, Kassim N M and Mohammad A B 2007 Opt. Eng. 46 013401
|
[21] |
Soldano L B and Erik C M P 1995 IEEE J. Lightwave Technol. 13 615
|
[22] |
Liu X Z, Zhu Y, Zhang F and Gong X F 2013 Chin. Phys. B 22 124209
|
[23] |
Schafft H A 1987 IEEE Trans. Electron. Dev. 34 664
|
[24] |
Coppola G, Sirleto L, Rendina I and Iodice M 2011 Optical Engineering 50 071112
|
[25] |
Nan X, Takafumi H and Katsuyuki U 2014 IEEE J. Lightwave Technol. 32 3067
|
[26] |
Wang X B, Meng J, Yue Y B, Sun J, Sun X Q, Wang F and Zhang D M 2013 Appl. Phys. A 113 195
|
[27] |
Sun J, Wang X B, Sun J W, Sun X Q, Chen C M, Wang F and Zhang D M 2014 Mod. Phys. Lett. B 28 1450113
|
[28] |
Qian H M, Yu G, Lu H, Wu C F, Tang L F, Zhou D, Ren F F, Zhang R, Zheng Y L and Huang X M 2015 Chin. Phys. B 24 077307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|