ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dynamic study of compressed electron layer driven by linearly polarized laser |
Feng-chao Wang(王凤超) |
School of Science, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract The dynamics of the compressed electron layer (CEL) are investigated when a linearly polarized (LP) laser pulse irradiates a plasma target. The turbulent motion of the CEL is investigated by a simple model, which is verified by particle-in-cell (PIC) simulations. It is found that the compressed layer disperses in a few cycles of the laser duration, because the CEL comes back with a large velocity in the opposite direction of the laser incident. A larger wavelength laser can be used to tailor the proton beam by reducing the turbulence of the CEL in the region of the LP laser acceleration.
|
Received: 25 November 2015
Revised: 28 December 2015
Accepted manuscript online:
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
Fund: Project supported by the Shanghai Provincial Special Foundation for Outstanding Young Teachers in University, China (Grant No. yyy10043). |
Corresponding Authors:
Feng-chao Wang
E-mail: fcwang@sit.edu.cn
|
Cite this article:
Feng-chao Wang(王凤超) Dynamic study of compressed electron layer driven by linearly polarized laser 2016 Chin. Phys. B 25 054102
|
[1] |
Chvykov V, Rousseau P, Reed S, Kalinchenko G and Yanovsky V 2008 Opt. Lett. 31 1456
|
[2] |
Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
|
[3] |
Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
|
[4] |
Naumova N, Schlegel T, Tikhonchuk V T, Labaune C, Sokolov I V and Mourou G 2009 Phys. Rev. Lett. 102 025002
|
[5] |
Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V and Pegoraro F 2002 Phys. Lett. A 299 240
|
[6] |
Bulanov S V and Khoroshkov V S 2002 Plasma Phys. Rep. 28 453
|
[7] |
Borghesi M, Campbell D H, Schiavi A, Haines M G, Willi O, MacKinnon A J, Patel P, Gizzi L A, Galimberti M, Clarke R J, Pegoraro F, Ruhl H and Bulanov S 2002 Phys. Plasmas 9 2214
|
[8] |
Shen B F and Xu Z Z 2001 Phys. Rev. E 64 056406
|
[9] |
Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
|
[10] |
Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
|
[11] |
Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021
|
[12] |
Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003
|
[13] |
Huang Y S, Wang N Y, Tang X Z, Shi Y J and Zhang S 2013 Chin. Phys. Lett. 30 025201
|
[14] |
Xia C Q, Deng A H, Liu L, Wang W T, Lu H Y, Wang C and Liu J S 2011 Chin. Phys. Lett. 28 084101
|
[15] |
Wang F C 2013 Chin. Phys. B 22 124102
|
[16] |
Zhang X, Shen B, Li X, Jin Z, Wang F and Wen M 2007 Phys. Plasmas 14 123108
|
[17] |
Qiao B, Zepf M, Borghesi M and Geissler M 2009 Phys. Rev. Lett. 102 145002
|
[18] |
Chen M, Pukhov A, Yu T P and Sheng Z M 2009 Phys. Rev. Lett. 103 024801
|
[19] |
Macchi A, Veghini S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003
|
[20] |
Yan X Q, Wu H C, Sheng Z M, Chen J E and Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001
|
[21] |
Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W and Habs D 2009 Phys. Rev. Lett. 103 245003
|
[22] |
Bulanov S V, Echkina E Y, Esirkepov T Z, Inovenkov I N, Kando M, Pegoraro F and Korn G 2010 Phys. Rev. Lett. 104 135003
|
[23] |
Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
|
[24] |
Tripathi V K, Liu C S, Shao X, Eliasson B and Sagdeev R Z 2009 Plasma Physics and Controlled Fusion 51 024014
|
[25] |
Robinson A P L 2011 Phys. Plasmas 18 056701
|
[26] |
Wang W P, Shen B F, Zhang X M, Ji L L, Wen M, Xu J C, Yu Y H, Li Y L and Xu Z Z 2011 Phys. Plasmas 18 013103
|
[27] |
Wang W P, Shen B F, Zhang X M, Ji L L, Yu Y H, Yi L Q, Wang X F and Xu Z Z 2012 Phys. Rev. ST Accel. Beams 15 081302
|
[28] |
Wang W P, Zhang X M, Wang X F, Zhao X Y, Xu J C, Yu Y H, Yi L Q, Shi Y, Zhang L G, Xu T J, Liu C, Pei Z K and Shen B F 2014 High Power Laser Sci. Eng. 2 e9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|