Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 054102    DOI: 10.1088/1674-1056/25/5/054102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic study of compressed electron layer driven by linearly polarized laser

Feng-chao Wang(王凤超)
School of Science, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  The dynamics of the compressed electron layer (CEL) are investigated when a linearly polarized (LP) laser pulse irradiates a plasma target. The turbulent motion of the CEL is investigated by a simple model, which is verified by particle-in-cell (PIC) simulations. It is found that the compressed layer disperses in a few cycles of the laser duration, because the CEL comes back with a large velocity in the opposite direction of the laser incident. A larger wavelength laser can be used to tailor the proton beam by reducing the turbulence of the CEL in the region of the LP laser acceleration.
Keywords:  linearly polarized laser pulse      proton acceleration      compressed electron layer      particle-in-cell simulation  
Received:  25 November 2015      Revised:  28 December 2015      Accepted manuscript online: 
PACS:  41.75.Jv (Laser-driven acceleration?)  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the Shanghai Provincial Special Foundation for Outstanding Young Teachers in University, China (Grant No. yyy10043).
Corresponding Authors:  Feng-chao Wang     E-mail:  fcwang@sit.edu.cn

Cite this article: 

Feng-chao Wang(王凤超) Dynamic study of compressed electron layer driven by linearly polarized laser 2016 Chin. Phys. B 25 054102

[1] Chvykov V, Rousseau P, Reed S, Kalinchenko G and Yanovsky V 2008 Opt. Lett. 31 1456
[2] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
[3] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
[4] Naumova N, Schlegel T, Tikhonchuk V T, Labaune C, Sokolov I V and Mourou G 2009 Phys. Rev. Lett. 102 025002
[5] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V and Pegoraro F 2002 Phys. Lett. A 299 240
[6] Bulanov S V and Khoroshkov V S 2002 Plasma Phys. Rep. 28 453
[7] Borghesi M, Campbell D H, Schiavi A, Haines M G, Willi O, MacKinnon A J, Patel P, Gizzi L A, Galimberti M, Clarke R J, Pegoraro F, Ruhl H and Bulanov S 2002 Phys. Plasmas 9 2214
[8] Shen B F and Xu Z Z 2001 Phys. Rev. E 64 056406
[9] Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
[10] Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
[11] Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021
[12] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003
[13] Huang Y S, Wang N Y, Tang X Z, Shi Y J and Zhang S 2013 Chin. Phys. Lett. 30 025201
[14] Xia C Q, Deng A H, Liu L, Wang W T, Lu H Y, Wang C and Liu J S 2011 Chin. Phys. Lett. 28 084101
[15] Wang F C 2013 Chin. Phys. B 22 124102
[16] Zhang X, Shen B, Li X, Jin Z, Wang F and Wen M 2007 Phys. Plasmas 14 123108
[17] Qiao B, Zepf M, Borghesi M and Geissler M 2009 Phys. Rev. Lett. 102 145002
[18] Chen M, Pukhov A, Yu T P and Sheng Z M 2009 Phys. Rev. Lett. 103 024801
[19] Macchi A, Veghini S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003
[20] Yan X Q, Wu H C, Sheng Z M, Chen J E and Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001
[21] Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W and Habs D 2009 Phys. Rev. Lett. 103 245003
[22] Bulanov S V, Echkina E Y, Esirkepov T Z, Inovenkov I N, Kando M, Pegoraro F and Korn G 2010 Phys. Rev. Lett. 104 135003
[23] Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
[24] Tripathi V K, Liu C S, Shao X, Eliasson B and Sagdeev R Z 2009 Plasma Physics and Controlled Fusion 51 024014
[25] Robinson A P L 2011 Phys. Plasmas 18 056701
[26] Wang W P, Shen B F, Zhang X M, Ji L L, Wen M, Xu J C, Yu Y H, Li Y L and Xu Z Z 2011 Phys. Plasmas 18 013103
[27] Wang W P, Shen B F, Zhang X M, Ji L L, Yu Y H, Yi L Q, Wang X F and Xu Z Z 2012 Phys. Rev. ST Accel. Beams 15 081302
[28] Wang W P, Zhang X M, Wang X F, Zhao X Y, Xu J C, Yu Y H, Yi L Q, Shi Y, Zhang L G, Xu T J, Liu C, Pei Z K and Shen B F 2014 High Power Laser Sci. Eng. 2 e9
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[4] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[5] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[6] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[7] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[8] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[9] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
[10] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[11] Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) . Chin. Phys. B, 2011, 20(10): 105202.
[12] Generation of fast protons in moderate-intensity laser-plasma interaction from rear sheath
Tan Zhi-Xin(谭志新), Huang Yong-Sheng(黄永盛), Lan Xiao-Fei(兰小飞) , Lu Jian-Xin(路建新), Duan Xiao-Jiao(段晓礁), Wang Lei-Jian(王雷剑), Yang Da-Wei(杨大为), Guo Shi-Lun(郭士伦), and Wang Nai-Yan(王乃彦). Chin. Phys. B, 2010, 19(5): 055201.
[13] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[14] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!