|
|
Carrier-envelope phase measurement using plasmonic-field-enhanced high-order harmonic generation of H atom in few-cycle laser pulses |
Wei Li(李伟), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信) |
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract We investigate the plasmonic-field-enhanced high-order harmonic generation (HHG) of H atom driven by few-cycle laser pulses, by solving the time-dependent Schrödinger equation (TDSE). Compared with the homogeneous field, HHG spectra generated by inhomogeneous field exhibit two-plateau structure. We analyze the origin of the two plateaus by using the semiclassical trajectory method. Our results from both classical and TDSE simulations show that the cutoffs of the two plateaus are dramatically affected by the carrier-envelope phase (CEP) of laser pulse in the inhomogeneous field, even for a little longer pulse. Thus, we can determine the CEP of driving laser based on the cutoff position of HHG generated in the inhomogeneous field.
|
Received: 08 December 2015
Revised: 06 March 2016
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264036, 11364038, and 11465016). |
Corresponding Authors:
Xiao-Xin Zhou
E-mail: zhouxx@nwnu.edu.cn
|
Cite this article:
Wei Li(李伟), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信) Carrier-envelope phase measurement using plasmonic-field-enhanced high-order harmonic generation of H atom in few-cycle laser pulses 2016 Chin. Phys. B 25 053203
|
[1] |
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[2] |
Corkum P B and Krausz F 2007 Nat. Phys. 3 381
|
[3] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[4] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[5] |
Zhao K, Zhang Q, Chini M, Wu Y, Wang X W and Chang Z H 2012 Opt. Lett. 37 3819
|
[6] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[7] |
Kulander K C, Schafer K J and Krausz J L 1993 Super-Intense Laser-Atom Physics, edited by Piraux B, et al. (New York and London: Plenum Press) p. 95
|
[8] |
Kim S, Jin J, kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
|
[9] |
Kim S, Park I Y, Choi J and Kim S W 2010 Progress in Ultrafast Intense Laser Science VI (Berlin: Springer-Verlag Press) p. 129
|
[10] |
Husakou A, Im S J and Herrmann J 2011 Phys. Rev. A 83 043839
|
[11] |
Yavuz I, Bleda E A and Topcu T 2012 Phys. Rev. A 85 013416
|
[12] |
Ciappina M F, Biegert J, Quidant R and Lewenstein M 2012 Phys. Rev. A 85 033828
|
[13] |
Shaaran T, Ciappina M F and Lewenstein M 2013 Phys. Rev. A 86 023408
|
[14] |
Wu J, Qi H X and Zeng H P 2008 Phys. Rev. A 77 053412
|
[15] |
Wu J, Qi H X and Zeng H P 2008 Appl. Phys. Lett. 93 051103
|
[16] |
Wu J, Qi H X and Zeng H P 2008 Opt. Lett. 33 2050
|
[17] |
Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 611
|
[18] |
kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[19] |
Li C, Wang D, Song L W, Liu J, Liu P, Xu C H, Leng Y X, Li R X and Xu Z Z 2011 Opt. Express 19 6783
|
[20] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S De and Nisoli M 2006 Science 314 443
|
[21] |
Cao W, Lu P X, Lan P F, Wang X L and Li Y H 2007 Phys. Rev. A 75 063423
|
[22] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[23] |
MilošviĐ B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203
|
[24] |
Peng L Y, Tan F, Gong Q H, Pronin E A and Starace A F 2009 Phys. Rev. A 80 013407
|
[25] |
Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schätzel M G, Paulus G G and Walther H 2004 Phys. Rev. Lett. 93 263001
|
[26] |
Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004
|
[27] |
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
|
[28] |
Baltuska A, Uiberacker M, Goulielmakis E, Kienberger R, Yakovlev V S, Udem Th, Hansch T W and Krausz F 2003 IEEE J. Sel. Quantum Electron 9 972
|
[29] |
Holzwarth R, Udem Th, Hänsch T W, Knight J C, Wadsworth W J and Russell P St J 2000 Phys. Rev. Lett. 85 2264
|
[30] |
Kim C J, Zhang C M, Wang J L, Wei P F, Song L W, Li C and Leng Y X 2009 Chin. Phys. B 18 1469
|
[31] |
Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E and Silvestri S De 2001 Nature 414 182
|
[32] |
Paulus G G, Lindner F, Walther H, Baltuška A, Goulielmakis E, Lezius M and Krausz F 2003 Phys. Rev. Lett. 91 253004
|
[33] |
Wittmann T, Horvath B, Helml W, Schätzel M G, Gu X, Cavalieri A L, Paulus G G and Kienberger R 2009 Nat. Phys. 5 357
|
[34] |
Adolph D, Sayler A M, Rathje T, Rühle K and Paulus G G 2011 Opt. Lett. 36 3639
|
[35] |
Milošvić D B, Paulus G G and Becker W 2002 Phys. Rev. Lett. 89 153001
|
[36] |
Milošvić D B, Paulus G G and Becker W 2003 Opt. Express 11 1418
|
[37] |
de Bohan A, Antoine P, Milošvić D B and Piraux B 1998 Phys. Rev. Lett. 81 1837
|
[38] |
de Bohan A, Antoine P, Milošvić D B, Kamta G L and Piraux B 1999 Laser Phys. 9 175
|
[39] |
Li Q G, Chen H, Zhang X and Yi X N 2014 Chin. Phys. B 23 074206
|
[40] |
Yang X, Lu J, Niu Y P and Gong S Q 2015 J. Phys. B: At. Mol. Opt. Phys. 48 135601
|
[41] |
Fetić B and Milošvić D B 2013 J. Mod. Opt. 60 1466
|
[42] |
Pérez-Hernández J A, Ciappina M F, Lewenstein M, Roso L and Zaïr A 2013 Phys. Rev. Lett. 110 053001
|
[43] |
He L X, Wang Z, Li Y, Zhang Q B, Lan P F and Lu P X 2013 Phys. Rev. A 88 053404
|
[44] |
Zeng T T, Li P C and Zhou X X 2014 Acta Phys. Sin. 63 2456 (in Chinese)
|
[45] |
Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|