|
|
Carrier envelope phase effect on the spatial distribution of high-order harmonic generation in asymmetric molecule |
Jun Zhang(张军), Hai-Feng Liu(刘海凤), Xue-Fei Pan(潘雪飞), Hui Du(杜慧), Jing Guo(郭静), Xue-Shen Liu(刘学深) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract The spatial distribution in high-order harmonic generation (HHG) from the asymmetric diatomic molecule HeH2+ is investigated by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation (TDSE). The spatial distribution of the HHG spectra shows that there is little contribution in HHG around the geometric center of two nuclei (z = 1.17 a.u.) and the equilibrium internuclear position of the H nucleus (z = 3.11 a.u.). We demonstrate the carrier envelope phase (CEP) effect on the spatial distribution of HHG in a few-cycle laser pulse. The HHG process is investigated by the time evolution of the electronic density distribution. The time-frequency analysis of HHG from two nuclei in HeH2+ is presented to further explain the underlying physical mechanism.
|
Received: 21 December 2015
Revised: 13 December 2016
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158, 11574117, and 61575077). |
Corresponding Authors:
Xue-Shen Liu
E-mail: liuxs@jlu.edu.cn
|
Cite this article:
Jun Zhang(张军), Hai-Feng Liu(刘海凤), Xue-Fei Pan(潘雪飞), Hui Du(杜慧), Jing Guo(郭静), Xue-Shen Liu(刘学深) Carrier envelope phase effect on the spatial distribution of high-order harmonic generation in asymmetric molecule 2016 Chin. Phys. B 25 053202
|
[1] |
Corkum P B and Krausz F 2007 Nat. Phys. 3 381
|
[2] |
Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
|
[3] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[4] |
Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[5] |
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
|
[6] |
Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[7] |
Guo J, Ge X L, Zhong H, Zhao X, Zhang M, Jiang Y and Liu X S 2014 Phys. Rev. A 90 053410
|
[8] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903
|
[9] |
Ge X L, Du H, Guo J and Liu X S 2015 Opt. Express 23 8837
|
[10] |
Ge X L, Du H, Wang Q, Guo J and Liu X S 2015 Chin. Phys. B 24 023201
|
[11] |
Kanai T, Minemoto S and Sakai H 2005 Nature 435 470
|
[12] |
De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V and Kling M F 2009 Phys. Rev. Lett. 103 153002
|
[13] |
Akagi H, Otobe T, Staudte A, Shiner A, Turner F, Dörner R, Villeneuve D M and Corkum P B 2009 Science 325 1364
|
[14] |
Kamta G L, Bandrauk A D and Corkum P B 2005 J. Phys. B 38 L339
|
[15] |
Zhang C P and Miao X Y 2015 Chin. Phys. B 24 043302
|
[16] |
Bian X B and Bandrauk A D 2010 Phys. Rev. Lett. 105 093903
|
[17] |
Ben-Itzhak I, Gertner I, Heber O and Rosner B 1993 Phys. Rev. Lett. 71 1347
|
[18] |
Lan P, Lu P, Li F, Li Q, Hong W, Zhang Q, Yang Z and Wang X 2008 Opt. Express 16 17542
|
[19] |
Kamta G L and Bandrauk A D 2005 Phys. Rev. Lett. 94 203003
|
[20] |
Bian X B and Bandrauk A D 2011 Phys. Rev. A 83 023414
|
[21] |
Liu K, Hong W and Lu P 2011 Opt. Express 19 20279
|
[22] |
Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418
|
[23] |
Sharafeddin O and Zhang J Z H 1993 Chem. Phys. Lett. 204 190
|
[24] |
Miao X Y and Zhang C P 2014 Phys. Rev. A 89 033410
|
[25] |
Feit M D and Fleck J A Jr 1983 J. Chem. Phys. 78 301
|
[26] |
Lu R F, He H X, Guo Y H and Han K L 2009 J. Phys. B 42 225601
|
[27] |
Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701
|
[28] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|