Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046105    DOI: 10.1088/1674-1056/25/4/046105

Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

Honey S1,2,3,4, Naseem S1, Ishaq A2,3,4, Maaza M3,4, Bhatti M T5, Wan D6
1 Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan;
2 National Center for Physics, Quaid-i-Azam University, Islamabad 44000, Pakistan;
3 UNESCO–UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P. O. Box 392, Pretoria, South Africa;
4 Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, Old Faure road, P. O. Box 722, Somerset West 7129, South Africa;
5 Department of Physics, Bahauddin Zakariya University, Multan 60800, Pakistan;
6 School of Materials Science and Engineering, Shanghai University, Shanghai 201900, China
Abstract  A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.
Keywords:  Ag nanowires      H+ ion irradiation      nanowelding      large scale nano-network      optical properties  
Received:  11 November 2015      Revised:  23 December 2015      Accepted manuscript online: 
PACS:  61.80.Jh (Ion radiation effects)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.67.Uh (Nanowires)  
Fund: Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.
Corresponding Authors:  Honey S, Naseem S     E-mail:;

Cite this article: 

Honey S, Naseem S, Ishaq A, Maaza M, Bhatti M T, Wan D Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation 2016 Chin. Phys. B 25 046105

[1] Groep J V, Spinelli P and Polman A 2012 Nano Lett. 12 3138
[2] Catrysse P B and Fan S 2010 Nano Lett. 10 2944
[3] Kuang P, Park J M, Leung W, Mahadevapuram R C, Nalwa K S, Kim T G, Chaudhary S, Ho K M and Constant K 2011 Adv. Mater. 23 2469
[4] Hecht D S, Hu L and Irvin G 2011 Adv. Mater. 23 1482
[5] Kumar A and Zhou C 2010 ACS Nano 4 11
[6] Hu L, Wu H and Cui Y 2011 MRS Bull. 36 760
[7] Ellmer K 2012 Nat. Photon. 6 809
[8] Tenent R C, Barnes T M, Bergeson J D, Ferguson A J, To B, Gedvilas L M, Heben M J and Blackburn J L 2009 Adv. Mater. 21 3210
[9] Lu Y C and Chou K S 2010 Nanotechnology 21 215707
[10] Scardaci V, Coull R, Lyons P E, Rickard D and Coleman J N 2011 Small 7 2621
[11] Kim T, Canlier A, Kim G H, Choi J, Park M and Han S M 2013 ACS Appl. Mater. Interfaces 5 788
[12] Lee J Y, Connor S T, Cui Y and Peumans P 2010 Nano Lett. 10 1276
[13] Hardin B E, Gaynor W, Ding I K, Rim S B, Peumans P and McGehee M D 2011 Org. Electron. 12 875
[14] Chung C H, Song T B, Bob B, Zhu R and Yang Y 2012 Nano Res. 5 805
[15] Leem D S, Edwards A, Faist M, Nelson J, Bradley D D C and de Mello J C 2011 Adv. Mater. 23 4371
[16] Liu C H and Yu X 2011 Nanoscale Res. Lett. 6 75
[17] Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z and Zhou J 2013 Nanotechnology 24 335202
[18] Spechler J A and Arnold C B 2012 Appl. Phys. A 108 25
[19] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S and Ko S H 2012 Adv. Mater. 24 3326
[20] Lu Y, Huang J Y, Wang C, Sun S and Lou J 2010 Nat. Nanotechnol. 5 218
[21] Tohmyoh H and Fukui S 2012 J. Nanoparticle Res. 4 1
[22] Zhou Y, Hu A, Khan M I, Wu W, Tam B and Yavuz M 2009 J. Phys.: Conf. Ser. 165 012012
[23] Kim S J and Janga D J 2005 Appl. Phys. Lett. 86 033112
[24] Wu W, Hu A, Li X, Wei J, Shu Q, Wang K, Yavuz M and Zhou Y 2008 Mater. Lett. 62 4486
[25] Erik C G, Wenshen C, Judy J C, Fukhuddin M, Stephen T, Connor M G C, Yi C, Michael D M and Mark L B 2012 Nat. Mater. 11 241
[26] S Xu, M Tian, J Wang, J Xu, J M Redwing and M H W Chan 2005 Small 1 1221
[27] Yu Z, Li L, Zhang Q, Hu W and Pei Q 2011 Adv. Mater. 23 4453
[28] Gaynor W, Burkhard G F, McGehee M D and Peumans P 2011 Adv. Mater. 23 2905
[29] Morgenstern F S, Kabra D, Massip S, Brenner T J, Lyons P E, Coleman J N and Friend R H 2011 Appl. Phys. Lett. 99 183307
[30] Fukui S and Tohmyoh H 2011 J. Appl. Phys. 50 057201
[31] Ziegler J S 2004 Nucl. Instrum. Method Phys. Res. B 219 1027
[32] Wang Z G, Dufour C, Euphrasie S and Toulemonde M 2003 Nucl. Instrum. Methods Phys. Res. B 209 194
[33] Li X, Gao F and Gu Z 2011 The Open Surface Science Journal 3 91
[34] Asha A, Ajit K, Shammi V, Sunil O, Kandasami A and Lekha N 2013 Nanoscale Res. Lett. 8 433
[35] Dee C F, Ahmad I, Long Y, Xingtai Z, Salleh M M and Majlis B Y 2011 Physica E 43 1857
[36] Mao H, Feng J, Ma X, Wu C and Zhao X 2012 J. Nanopart. Res. 14 887
[37] Pallavi Rana and Chauhan R P 2014 Physica B 451 26
[38] Krasheninnikov A V, Nordlund K and Keinonen J 2002 Appl. Phys. Lett. 81 1101
[39] Krasheninnikov A V, Nordlund K and Keinonen J 2002 Phys. Rev. B 65 165423
[40] Krasheninnikov A V and Nordlund K 2004 Nucl. Instrum. Methods Phys. Res. B 216 355
[41] Ishaq A, Ni Z, Yan L, Gong J and Zhu D 2010 Rad. Phys. Chem. 79 687
[42] Ziegler J F, Biersack J P and Littmark U 1985 The stopping and range of ions in solids (New York: Perganom Press)
[43] Kumar N, Kumar R, Kumar S and Chakarvarti S K 2014 Curr. Appl. Phys. 14 1547
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[10] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!