Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040201    DOI: 10.1088/1674-1056/25/4/040201
GENERAL   Next  

Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules

Dan-Feng Zhang(张丹枫)1, Zhi-Feng Hao(郝志峰)1, Bi Zeng(曾碧)1, Yan-Nan Qian(钱艳楠)2, Ying-Xin Huang(黄颖欣)2, Zhen-Da Yang(杨振大)2
1 School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Abstract  With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz-18 GHz for paraffin-Ni(C) composites are investigated. The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%, 70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches -26.73 dB at 12.7 GHz, and below -10 dB, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.
Keywords:  microwave absorption      simulation      reflection loss      carbon-coated nickel nanoparticles      permittivity      permeability  
Received:  23 October 2015      Revised:  25 December 2015      Accepted manuscript online: 
PACS:  02.10.Ud (Linear algebra)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the Science and Technology Program of Guangdong Province, China (Grant Nos. 2014B010106005, 2013B051000077, and 2015A050502047) and the Science and Technology Program of Guangzhou City, China (Grant No. 201508030018).
Corresponding Authors:  Dan-Feng Zhang, Zhi-Feng Hao     E-mail:  dfzhang@gdut.edu.cn;zfhao@gdut.edu.cn

Cite this article: 

Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大) Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules 2016 Chin. Phys. B 25 040201

[1] Yu Z H, Tian J R and Song Y R 2014 Chin. Phys. B 23 094206
[2] Liu G Q and Ying H P 2014 Chin. Phys. B 23 050502
[3] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[4] Ramasubramaniam R, Chen J and Liu H Y 2003 Appl. Phys. Lett. 83 2928
[5] Zhang X F, Dong X L and Huang H 2007 Acta Mater. 55 3727
[6] Zhang X F, Dong X L and Huang H 2007 J. Phys. D: Appl. Phys. 40 5383
[7] Zeng M, Liu J, Yue M, Yang H Z, Dong H R, Tang W K, Jiang H, Liu H F and Yu R H 2015 J. Appl. Phys. 117B 527
[8] Zuo H P, Ge S H and Wang Z K 2008 IEEE Trans. Magn. 44 3111
[9] Liao Z Q, Nie Y and Ren W Y 2010 IEEE Magn. Lett. 1 5000204
[10] Qiu J, Gong R Z and Feng Z K 2010 J. Alloys Compd. 496 467
[11] Huang X G, Zhang J, Liu Z H, Sang T Y, Song B, Zhu H L and Wong C P 2015 J. Alloys Compd. 648 1072
[12] Huang X G, Zhang J, Xiao S R and Chen G S 2014 J. Am. Ceram. Soc. 97 1363
[13] Cho H S and Kim S S 2015 J. Appl. Phys. 117 311
[14] Cao M S, Shi X L, Fang X Y, Jin H B, Hou Z L and Zhou W 2007 Appl. Phys. Lett. 91 203110
[15] Zhang H Y, Zeng G X and Ying G 2009 J. Appl. Phys. 105 054314
[16] Zhan Y Q, Zhao R and Lei Y J 2011 J. Magn. Magn. Mater. 323 1006
[17] Tong G X, Wu W H and Hua Q A 2011 J. Alloys Compd. 509 451
[18] Ye Z, Li Z and Roberts J A 2010 J. Appl. Phys. 108 054315
[19] Chen M D, Jie X H and Zhang H Y 2014 Acta Phys. Sin. 63 066103 (in Chinese)
[20] Zou T C, Li H P and Zhao N G 2010 J. Alloys Compd. 496 L22
[21] Zhao D L, Zhang J M and Li X 2010 J. Alloys Compd. 505 712
[22] Wang H Y, Zhu D M, Zhou W C and Luo F 2015 Chem. Phys. Lett. 633 223
[23] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B and Lei J P 2006 Appl. Phys. Lett. 89 053115
[24] Wang H, Dai Y Y, Gong W J, Geng D Y, Ma S, Li D, Liu W and Zhang Z D 2013 Appl. Phys. Lett. 102 223113
[25] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
[26] Yusoff A N, Abdullah M H, Mansor A A and Hamid S A A 2002 Appl. Phys. 92 876
[27] Liu X G, Ou Z Q, Geng D Y, Han Z, Jiang J J, Liu W and Zhang Z D 2010 Carbon 48 891
[28] Liu X G, Jiang J J, Geng D Y, Li B Q, Han Z and Liu W 2009 Appl. Phys. Lett. 94 053119
[29] Liu X G, Li B, Geng D Y, Cui W B, Yang F and Xie Z G 2009 Carbon 47 470
[30] Liu X G, Or S W, Sun Y P, Li W H, He Y Z, Zhu G H, Jin C G, Yan Q, Lv Y H, Ho S L and Zhao S S 2013 J. Alloys Compd. 548 239
[31] Han Z, Li D, Wang H, Liu X G, Li J and Geng D Y 2009 Appl. Phys. Lett. 95 023114
[32] Liu X G, Geng D Y, Shang P J, Meng H, Yang F and Li B 2008 J. Phys. D: Appl. Phys. 41 175006
[33] Sun Y P, Liu X G, Feng C, Fan J C, Lv Y H and Wang Y R 2014 J. Alloy Compd. 586 688
[34] Wu J H and Kong L B 2004 Appl. Phys. Lett. 84 4956
[35] Liu J R, Itoh M, Horikawa T, Machida K, Sugimoto S and Maeda T 2005 J. Appl. Phys. 98 054305
[36] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[37] Zhang D F, Xu F X, Lin J, Yang Z D and Zhang M 2014 Carbon 80 103
[38] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 40
[39] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N and Zhu X G 2006 Appl. Phys. Lett. 89 053115
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[13] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!