Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 026102    DOI: 10.1088/1674-1056/25/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

Xiao-Xu Jiang(姜晓旭)1,2, Guan-Yu Chen(陈冠宇)1,3, Yu-Tong Li(李玉同)2, Xin-Lu Cheng(程新路)1, Cui-Ming Tang(唐翠明)4
1. Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3. Technology Development Center, Central Semiconductor Manufacturing Corporation, Wuxi 214000, China;
4. Department of Physics and Mathematics, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract  Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ =1.80 g/cm3to 3.40 g/cm3 and temperatures from T=500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS).
Keywords:  liquid CO2-N2 mixture      quantum molecular dynamic (QMD) simulations      DFT-D      phase transition  
Received:  30 May 2015      Revised:  06 September 2015      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  62.50.-p (High-pressure effects in solids and liquids)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).
Corresponding Authors:  Xin-Lu Cheng     E-mail:  chengxl@scu.edu.cn

Cite this article: 

Xiao-Xu Jiang(姜晓旭), Guan-Yu Chen(陈冠宇), Yu-Tong Li(李玉同), Xin-Lu Cheng(程新路), Cui-Ming Tang(唐翠明) Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions 2016 Chin. Phys. B 25 026102

[1] Kortbeek P J, Seldam C A T and Schouten J A 1990 Mol. Phys. 69 1001
[2] Jones H D and Zerilli F J 1991 J. Appl. Phys. 69 3893
[3] Duan Z, Moller N and Weare J H 1996 Geochim. Cosmochim. Acta 60 1209
[4] Zhang Q L, Zhang P, Song H F and Liu H F 2008 Chin. Phys. B 17 1341
[5] Nellis W J, Ree F H, van Thiel M and Mitchell A C 1981 J. Chem. Phys. 75 3055
[6] Mintsev V B and Fortov V E 2006 J. Phys. A: Math. Gen. 39 4319
[7] Knudson M D, Hanson D L, Bailey J E, Hall C A and Asay J R 2003 Phys. Rev. Lett. 90 035505
[8] Bocharova I A, Alnaser A S, Thumm U, Niederhausen T, Ray D, Cocke C L and Litvinyuk I V 2011 Phys. Rev. A 83 013417
[9] Guo F, Zhang H, Hu H Q and Cheng X L 2014 Chin. Phys. B 23 046501
[10] Maillet J B and Bourasseau E 2009 J. Chem. Phys. 131 084107
[11] Zhao Y H, Liu H F and Zhang Q L 2012 Acta Phys. Sin. 61 230509 (in Chinese)
[12] Magro W R, Ceperley D M, Pierleoni C and Bernu B 1996 Phys. Rev. Lett. 76 1240
[13] Pierleoni C, Ceperley D M, Bernu B and Magro W R 1994 Phys. Rev. Lett. 73 2145
[14] Hohl D, Natoli V, Ceperley D M and Martin R M 1993 Phys. Rev. Lett. 71 541
[15] Kohanoff J and Hansen J P 1995 Phys. Rev. E 54 768
[16] Collins L, Kwon I, Kress J, Troullier N and Lynch D 1995 Phys. Rev. E 52 6202
[17] Kwon I, Kress J D and Collins L A 1994 Phys. Rev. B 50 9118
[18] Kress J D, Mazevet S, Collins L A and Blottiau P 2004 AIP Conf. Proc. 706 289
[19] Holst B, Redmer R and Desjarlais M P 2008 Phys. Rev. B 77 184201
[20] Maillet J B, Bourasseau E and Jomard G 2011 Chem. Phys. Lett. 507 84
[21] Byrd E F C and Rice B M 2007 J. Phys. Chem. C 111 2787
[22] Chen G Y, Jiang X X, Cheng X L and Zhang H 2012 J. Chem. Phys. 137 054504
[23] Wang F H, Yang C L, Li X J and Jing F Q 2000 Acta Phys. Sin. 49 114 (in Chinese)
[24] Lenosky T J, Bickham S R, Kress J D and Collins L A 2000 Phys. Rev. B 61 1
[25] Nellis W J, Mitchell A C, van Thiel M, Devine G J and Trainor R J 1983 J. Chem. Phys. 79 1480
[26] Knudson M D, Hanson D L, Bailey J E, Hall C A, Asay J R and Deeney C 2004 Phys. Rev. B 69 144209
[27] Kress J D, Mazevet S and Collins L A 2002 AIP Conf. Proc. 620 91
[28] Nellis W J and Mitchell A C 1980 J. Chem. Phys. 73 6137
[29] Hamilton D C, Nellis W J, Mitchell A C, Ree F H and van Thiel M 1988 J. Chem. Phys. 88 5042
[30] Bastea M, Mitchell C and Nellis W J 2001 Phys. Rev. Lett. 86 3108
[31] Edwards P P and Hensel F 2002 Chem. Phys. Chem. 3 53
[32] Kress J D, Mazevet S, Collins L A and Wood W W 2000 Phys. Rev. B 63 024203
[33] Mailhiot C, Yang L H and McMahan A K 1992 Phys. Rev. B 46 14419
[34] Goncharov A F, Gregoryanz E, Mao H k, Liu Z X and Hemley R J 2000 Phys. Rev. Lett. 85 1262
[35] Mazevet S, Blottiau P, Kress J D and Collins L A 2004 Phys. Rev. B 69 224207
[36] Zhang Y J, Wang C, Li D F and Zhang P 2011 J. Chem. Phys. 135 064501
[37] Grimme S 2004 J. Comput. Chem. 25 1463
[38] Grimme S 2006 J. Comput. Chem. 27 1787
[39] Nellis W J, Radousky H B, Hamilton D C, Mitchell A C, Holmes N C, Christianson K B and van Thiel M 1991 J. Chem. Phys. 94 2244
[40] Nellis W J, Holmes N C, Mitchell A C and van Thiel M 1984 Phys. Rev. Lett. 53 1661
[41] Mazevet S, Johnson J D, Kress J D and Collins L A 2001 Phys. Rev. B 65 014204
[42] Mukherjee G D and Boehler R 2007 Phys. Rev. Lett. 99 225701
[43] Boates B and Bonev S A 2009 Phys. Rev. Lett. 102 015701
[44] Donadio D, Spanu L, Duchemin I, Gygi F and Galli G 2010 Phys. Rev. B 82 020102(R)
[45] Nellis W J, Mitchell A C, Ree F H, Ross M, Holmes N C, Trainor R J and Erskine D J 1991 J. Chem. Phys. 95 5268
[46] Wang C and Zhang P 2010 J. Chem. Phys. 133 134503
[47] Boates B, Hamel S, Schwegler E and Bonev S A 2011 J. Chem. Phys. 134 064504
[48] Root S, Cochrane K R, Carpenter J H and Mattsson T R 2013 Phys. Rev. B 87 224102
[49] Hamilton D C and Ree F H 1989 J. Chem. Phys. 90 4972
[50] Martin R M and Needs R J 1986 Phys. Rev. B 34 5082
[51] Lewis S P and Cohen M L 1992 Phys. Rev. B 46 11117
[52] Alemany M M G and Martins J L 2003 Phys. Rev. B 68 024110
[53] Galli G, Hood R, Hazi A and Gygi F 2000 Phys. Rev. B 61 909
[54] Bagnier S, Blottiau P and Clerouin J 2001 Phys. Rev. E 63 015301
[55] Peverati R and Baldridge K K 2008 J. Chem. Theory Comput. 4 2030
[56] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[57] Goedecker S, Teter M and Hutter J 1996 Phys. Rev. B 54 1703
[58] Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
[59] Nosé S 1984 J. Chem. Phys. 81 511
[60] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[61] Guo F, Cheng X and Zhang H 2012 Combust. Sci. Technol. 184 1233
[62] Rom N, Hirshberg B, Zeiri Y, Furman D, Zybin S V, Goddard III W A and Kosloff R 2013 J. Phys. Chem. C 117 21043
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!