Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024703    DOI: 10.1088/1674-1056/25/2/024703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

Kang Chen(陈康)1 and Hua Liang(梁华)2,3
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710032, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710032;
3. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China
Abstract  Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 us and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control.
Keywords:  nanosecond discharge      plasma aerodynamic actuation      UAV      separation  
Received:  28 August 2015      Revised:  27 September 2015      Accepted manuscript online: 
PACS:  47.85.L- (Flow control)  
  52.80.Tn (Other gas discharges)  
  47.32.Ff (Separated flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).
Corresponding Authors:  Hua Liang     E-mail:  lianghua82702@126.com

Cite this article: 

Kang Chen(陈康) and Hua Liang(梁华) Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation 2016 Chin. Phys. B 25 024703

[1] Corke T C, Post M L and Orlov D M 2008 J. Propul. Power 24 935
[2] Roth J R 2003 Phys. Plasmas 10 2117
[3] Forte M, Jolibois J, Pons J, Moreau E, Touchard G and Cazalens M 2007 Exp. Fluids 7 362
[4] Visbal M R, Gaitonde D V and Roy S 2006 37th AIAA Plasmadynamics and Lasers Conference, June 5-8, 2006, San Francisco, California, USA
[5] Huang J, Corke T C and Thomas F O 2006 AIAA J. 44 51
[6] Post M L and Corke T C 2006 AIAA J. 44 3125
[7] He C, Corke T C and Patel M P 2009 J. Aircraft 46 864
[8] Little J, Takashima K, Nishihara M, Adamovich I and Samimy M 2012 AIAA J. 50 350
[9] Yugulis K, Gregory J W and Samimy M 2013 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 7-10, 2013, Grapevine, Texas, USA
[10] Roupassov D, Nikipelov A, Nudnova M and Starikovskii A 2009 AIAA J. 47 168
[11] Patel M P, Ng T T, Vasudevan S, Corke T C and He C 2007 J. Aircraft 44 1264
[12] Roupassov D, NikipelovA, Nudnova M and Starikovskii A 2008 46th AIAA Aerospace Sciences Meeting and Exhibit, January 7-10, 2008, Reno, Nevada, USA
[13] Roth J R and Dai X 2006 44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada, USA
[14] Benard N, Bonnet J P, Touchard G and Moreau E 2008 AIAA J. 49 2293
[15] Opaits D, Roupassov D, Starikovskaia S, Starikovskii A, Zavialov I and Saddoughi S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Nevada, USA
[16] Lombardi A J, Bowles P O and Corke T C 2012 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, Nashville, Tennessee, USA
[17] Little J, Nishihara M, Adamovich I and Samimy M 2010 Exp. Fluids 48 521
[18] Opaits D F, Neretti G,, Zaidi S H, Shneider M N, Miles R B, Likhanskii A V and Macheret S O 2008 46th AIAA Aerospace Sciences Meeting and Exhibit, January 7-10, 2008, Reno, Nevada, USA
[19] Roupassov D and Starikovskii A 2008 IEEE T. Plasma Sci. 36 1312
[20] Starikovskii A, Roupassov D, Nikipelov A and Nudnova M 2009 Plasma Sources Sci. T 18 034051
[21] Shao T, Jiang H, Zhang C, Yan P, Lomaev M I and Tarasenko V F 2013 Europhys. Lett. 101 45002
[22] Shao T, Zhang C, Zhou Y, Xie Q, Zhou Z and Yan P 2014 IEEE T. Plasma Sci. 42 2408
[23] Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
[24] Wu Y, Li Y H and Zhou M 2009 40th AIAA Plasma Dynamics and Lasers Conference, June 22-25, 2009, San Antonio, Texas, USA
[25] Wu Y, Li Y H, Zhu J Q, Su C B, Liang H and Li G 2007 37th AIAA Fluid Dynamics Conference and Exhibit, June 25-28, 2007, Miami, USA
[26] Wang J, Li Y H and Cheng B Q 2009 J. Phys. D: Appl. Phys. 42 165503
[27] Jin D, Li Y H, Jia M, Li F Y, Cui W, Sun Q, Zhang B L and Li J 2014 Chin. Phys. B 23 035201
[28] Sun Q, Cui W, Li Y H, Cheng B Q, Jin D and Li J 2014 Chin. Phys. B 23 075210
[29] Li Y H, Liang H, Ma Q Y, Wu Y, Song H M and Wu W 2008 Acta Aeronautical et Astronautica Sinica 29 1429 (in Chinese)
[30] Li Y H, Wu Y, Liang H, Song H M and Jia M 2010 Chin. Sci. Bull. 55 3060 (in Chinese)
[31] Wu Y 2008 "Study on the Mechanism of Plasma Aerodynamic Actuation and Its Application in Compressor Stability Extension", Ph. D. Dissertation (Shaanxi: Air Force Engineering University) (in Chinese)
[1] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[2] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[3] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[4] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[5] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[6] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[7] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[8] Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞). Chin. Phys. B, 2021, 30(11): 114701.
[9] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[10] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[11] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[12] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[13] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[14] High efficiency hydrogen purification through P2C3 membrane: A theoretical study
Zhao-Qin Chu(储兆琴), Xiao Gu(顾晓), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2019, 28(12): 128703.
[15] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
No Suggested Reading articles found!