INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane |
Yuan Guo(郭源)1, Chunmei Tang(唐春梅)1, Xinbo Wang(王鑫波)1, Cheng Wang(王成)1, Ling Fu(付玲)2 |
1 College of Science, Hohai University, Nanjing 210098, China;
2 College of Agricultural Engineering, Nanyang Normal University, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province;Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China |
|
|
Abstract Membrane technology has been used for H2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H2 from the impurity gases (H2, N2, H2O, CO, Cl2, and CH4) by the bilayer porous graphitic carbon nitride(g-C3N4) membrane. Theoretically, the bilayer g-C3N4 membrane with a diameter of about 3.25 Å should be a perfect candidate for H2 purification from these mixed gases, which is verified by the high selectivity (S) for H2 over other kinds of gases (3.43×1028 for H2/N2; 1.40×1028 for H2/H2O; 1.60×1026 for H2/CO; 4.30×1014 for H2/Cl2; 2.50×1055 for H2/CH4), and the permeance (P) of H2 (13 mol/m2·s·Pa) across the bilayer g-C3N4 membrane at 300 K, which should be of great potential in energy and environmental research. Our studies highlight a new approach towards the final goal of high P and high S molecular-sieving membranes used in simple structural engineering.
|
Received: 17 November 2018
Revised: 11 February 2019
Accepted manuscript online:
|
PACS:
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018B19414), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010), the National Natural Science Foundation of China (Grant Nos. 51776094 and 51406075), the Program of Henan Provincial Department of Education, China (Grant No. 16A330004), the Special Fund of Nanyang Normal University, China (Grant No. ZX2016003), the Science and Technology Program of Henan Department of Science and Technology, China (Grant No. 182102310609), and the Scientific Research and Service Platform Fund of Henan Province, China (Grant No. 2016151). |
Corresponding Authors:
Chunmei Tang, Ling Fu
E-mail: tcmnj@163.com;ful263@nenu.edu.cn
|
Cite this article:
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲) Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane 2019 Chin. Phys. B 28 048102
|
[1] |
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
|
[2] |
Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E and Silva C M 2018 Sep. Purif. Rev. 47 229
|
[3] |
Bojdys M J, Müller J O, Antonietti M and Thomas A 2008 Chem.-Eur. J. 14 8177
|
[4] |
Ockwig N W and Nenoff T M 2007 Chem. Rev. 107 4078
|
[5] |
Sedivy V M 2008 National Salt Conference
|
[6] |
Bai H and Yeh A C 1997 Ind. Eng. Chem. Res. 36 2490
|
[7] |
Bara J E, Gabriel C J, Hatakeyama E S, Carlisle T K, Lessmann S, Noble R D and Gin D L 2008 J. Membrane Sci. 321 3
|
[8] |
Bernardo P, Drioli E and Golemme G 2009 Ind. Eng. Chem. Res. 48 4638
|
[9] |
Spillman R W 1989 Chem. Eng. Prog. 85 41
|
[10] |
Yu M, Noble R D and Falconer J L 2011 Acc. Chem. Res. 44 1196
|
[11] |
Vos R M and Verweij H 1998 Science 279 1710
|
[12] |
Shiflett M B and Foley H C 1999 Science 285 1902
|
[13] |
Hong T, Chatterjee S, Mahurin S M, Fan F, Tian Z, Jiang D E, Long B K, Mays J W, Sokolov A P and Saito T 2017 J. Membrane Sci. 530 213
|
[14] |
Dong J, Lin Y S, Kanezashi M and Tang Z 2008 J. Appl. Phys. 104 13
|
[15] |
Oyama S T, Lee D, Hacarlioglu P and Saraf R F 2004 J. Membr Sci. 244 45
|
[16] |
Gates B C 1992 Catalytic Chemistry
|
[17] |
Blankenburg S, Bieri M, Fasel R, Müllen K, Pignedoli C A and Passerone D 2010 Small 6 2266
|
[18] |
Hu W, Wu X, Lia Z and Yang J 2013 Phys. Chem. Chem. Phys. 15 5753
|
[19] |
Jiao Y, Du A, Hankel M, Zhu Z, Rudolphb V and Smith S C 2011 Chemi. Commun. 47 11843
|
[20] |
Winter M and Brodd R J 2004 Chem. Rev. 10 4245
|
[21] |
Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q and Cheng H M 2010 J. Am. Chem. Soc. 132 11642
|
[22] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[23] |
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[24] |
Bunch J S, Verbridge S S, Alden J S, Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
|
[25] |
Leenaerts O, Partoens B and Peeters F M 2008 Appl. Phys. Lett. 93 193107
|
[26] |
Jiang D E, Cooper V R and Dai S P 2009 Nano. Lett. 9 4019
|
[27] |
Shan M, Xue Q Jing N Ling C, Zhang T, Yan Z and Zheng J 2012 Nanoscale 4 5477
|
[28] |
Fischbein M D and Drndić M 2008 Appl. Phys. Lett. 93 113107
|
[29] |
Du A and Smith S C 2010 J. Phys. Chem. Lett. 2 73
|
[30] |
Koenig S P, Wang L, Pellegrino J and Bunch J S S 2012 Nat. Nanotechnol. 7 728
|
[31] |
Zhu L, Xue Q Z, Li X F, Jin Y K, Zheng H X, Wu T T and Guo Q K 2015 Acs Appl. Mater. Inter. 7 28502
|
[32] |
Du H, Li J, Zhang J, Su G, Li X and Zhao Y S 2011 J. Phys. Chem. C 115 23261
|
[33] |
Zhang X, Tang C and Jiang Q 2016 Int. J. Hydrogen Energy 41 10776
|
[34] |
Zhu L, Xue Q, Li X, Wu T, Jin Y and Xing W 2015 J. Mater. Chem. A 3 21351
|
[35] |
Lu R, Meng Z, Rao D, Wang Y, Shi Q, Zhang Y, Kan E, Xiao C, Deng K I 2014 Nanoscale 6 9960
|
[36] |
Huang C, Wu H, Deng K Tangb W and Kan E 2014 Phys. Chem. Chem. Phys. 16 25755
|
[37] |
Kroke E, Schwarz M, Bordon E H, Kroll P, Noll B and Norman A D 2002 New. J. Chem. 26 508
|
[38] |
Fang L, Ohfuji H, Shinmei T and Irifune T 2011 Diam. Relat. Mater. 20 819
|
[39] |
Ji Y, Dong H, Lin H, Zhang L, Houa T and Li Y 2016 RSC Adv. 6 52377
|
[40] |
Jiao Y, Du A, Smith S C, Zhu Z and Qiao S Z 2015 J. Mater. Chem. A 3 6767
|
[41] |
Park H B, Jung C H Lee Y M Hill A J, Pas S J, Mudie S T, Wagner E V, Freeman B D and Cookson D J 2007 Science 318 254
|
[42] |
Zhu L, Jin Y, Xue Q, Li X, Zheng H, Wu T and Ling C 2016 J. Mater. Chem. A 4 15015
|
[43] |
Chang X, Zhu L, Xue Q, Li X, Guo T, Li X and Ma M 2018 J. CO2 Util. 26 294
|
[44] |
Du N, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L and Guiver M D 2011 Nat. Mater. 10 372
|
[45] |
Kesting R E, Fritzsche A K, Murphy M K, Cruse C A, Handermann A C, Malon R F and Moore 1990 J. Appl. Polym. Sci. 40 1557
|
[46] |
Robeson L M 1991 J. Membr. Sci. 62 165
|
[47] |
Wang X, Mehandzhiyski A Y, Arstad B, Van Aken K L, Mathis T S, Gallegos A, Tian Z, Ren D, Sheridan E, Grimes B A, Jiang D E, Wu J, Gogotsi Y and Chen D 2017 J. Am. Chem. Soc. 139 18681
|
[48] |
Ackern F V, Krasemann L and Tieke B 1998 Thin Solid Films 327 762
|
[49] |
Bartolomei M and Giorgi G 2016 ACS Appl. Mater. Interfaces 8 27996
|
[50] |
Gadipelli S and Guo Z X 2015 Prog. Mater. Sci. 69 1
|
[51] |
Zhang X, Xie X, Wang H, Zhang J, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 18
|
[52] |
Li Y, Zhou Z, Shena P and Chen Z 201 Chem. Commun. 46 3672
|
[53] |
Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
|
[54] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[55] |
Krasnov P O, Ding F, Singh, A K and Yakobson B I 2007 J. Phys. Chem. C 111 17977
|
[56] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[57] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[58] |
Semiempirical G S 2006 J. Comput. Chem. 27 1787
|
[59] |
Si L and Tang C 2017 Int. J. Hydrogen Energy 42 16611
|
[60] |
Wang X, Tang C, Zhu W, Zhou X, Zhou Q and Cheng C 2018 J. Physl Chem. C 122 9654
|
[61] |
Wu F, Liu Y, Yu G, Shen D, Wang Y and Kan E 2012 J. Phys. Chem. Lett. 3 3330
|
[62] |
Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
|
[63] |
Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed 128 11609
|
[64] |
Wu T, Xue Q, Ling C, Shan M, Liu Z, Tao Y and Li X 2014 J. Phys. Chem. C 118 7369
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|