Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128703    DOI: 10.1088/1674-1056/ab55cf
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High efficiency hydrogen purification through P2C3 membrane: A theoretical study

Zhao-Qin Chu(储兆琴)1,2, Xiao Gu(顾晓)1,2, Xiang-Mei Duan(段香梅)1,2
1 Department of Physics, Ningbo University, Ningbo 315211, China;
2 Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo 315211, Chinaa
Abstract  It is critical to design an effective two-dimensional membrane for hydrogen purification from the mixed gas, due to its wide range of scientific and industrial applications. In this work, we investigate the hydrogen separation performance of P2C3 membranes by density functional theory and molecular dynamics simulations. The results show that the energy barrier of the H2 molecule through the P2C3 film is only 0.18 eV, while the energy barriers of the CO, N2, CO2, and CH4 molecules are 0.77 eV, 0.87 eV, 0.52 eV, and 1.75 eV, respectively. In addition, the P2C3 film has high H2 selectivity toward other gas molecules and high H2 permeability at room temperature. Under 6% tensile strain, 82% hydrogen molecules pass through the film with a H2 permeance of 2.22×107 gas permeance unit (GPU), while other molecules cannot across the membrane at all. Therefore, the P2C3 membrane is an excellent material for hydrogen purification.
Keywords:  two-dimensional membrane      hydrogen separation      first-principles  
Received:  16 October 2019      Accepted manuscript online: 
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.05.Rm (Porous materials; granular materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033) and the KC Wong Magna Foundation in Ningbo University, China.
Corresponding Authors:  Xiang-Mei Duan     E-mail:  duanxiangmei@nbu.edu.cn

Cite this article: 

Zhao-Qin Chu(储兆琴), Xiao Gu(顾晓), Xiang-Mei Duan(段香梅) High efficiency hydrogen purification through P2C3 membrane: A theoretical study 2019 Chin. Phys. B 28 128703

[34] Zhu Z Q 2006 J. Membr. Sci. 281 754
[1] Keskin S, van Heest T M and Sholl David S 2014 Nat. Commun. 5 4260
[2] Yuan Y, Sun F X, Li L, Cui P and Zhu G S 2014 Nat. Commun. 5 4260
[3] Hall H E, Ford P J and Thompson K 1966 Cryogenics 6 80
[4] Das N K, Chaudhuri H, Bhandari R K, Ghose D and Sen P 2008 Curr. Sci. 6 1684
[5] Shan M X, Xue Q Z, Jing N N, Ling C C and Zhang 2012 Nanoscale 4 5477
[6] Hu W, Wu X J, Li Z Y and Yang J L 2014 Phys. Chem. Chem. Phys. 16 6957
[7] Gao G P, Jiao Y, Ma F X, Jiao Y L, Kou L Z, Waclawik E and Du A J 2017 Int. J. Hydrogen Energ. 42 5577
[8] Chang X X, Qing Z, He D, Zhu L, Li X F and Tao B S 2017 Int. J. Hydrogen Energ. 42 24189
[9] Jiao Y, Du A J, Smith Sean C, Zhu Z H and Qiao S Z 2015 J. Mater. Chem. A 3 6767
[10] Jiao Y, Du A J, Hankel M, Zhu Z H, Rudolph V and Smith S C 2011 Chem. Commun. 47 11843
[11] Novoselov K S, Geim A K, Morozov S V and Jiang D 2004 Science 306 666
[12] Jiang D E, Cooper, Valentino R and Dai S 2009 Nano. Lett. 9 4019
[13] Liu H J, Chen Z F, Dai S and Jiang D E 2015 J. Solid State Chem. 224 2
[14] Liu H J, Dai S and Jiang D E 2013 Solid State Commun. 175 101
[15] Koenig S P, Wang L D, Pellegrino J and Bunch J S 2012 Nat. Nanotechol. 7 728
[16] Ma Z N, Zhao X D, Tang Q and Zhou Z 2014 Int. J. Hydrogen Energ. 39 5037
[17] Bartolomei M, Carmona N, Estela and Hern á ndez M I 2014 J. Phys. Chem. C 118 29966
[18] Cranford S W and Buehler M J 2012 Nanoscale 4 4587
[19] Zhang H Y, He X J, Zhao M W, Zhang M, Zhao L X, Feng X J and Luo Y H 2012 J. Phys. Chem. C 116 16634
[20] Rao Y C and Chu Z Q, Gu X and Duan X M 2019 Comput. Mater. Sci. 161 53
[21] Huang S L, Xie Y E, Zhong C Y and Chen Y P 2018 J. Phys. Chem. Lett. 9 2751
[22] Kresse G and Furthm ü ller J 1996 Comput. Mater. Sci. 6 15
[23] Kresse G and Furthm ü ller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Ernzerhof M and Burke K 1996 Phys. Rev. Lett. 77 3865
[25] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
[26] Grimme S 2006 J. Comput. Chem. 27 1787
[27] Wu T T, Xue Q Z, Ling C C, Shan M X, Liu Z L, Tao Y H and Li X F 2014 J. Phys. Chem. C 118 7369
[28] Min H K, Sahu, Bhagawan, Banerjee, Sanjay K and MacDonald A H 2007 Phys. Rev. B 75 155115
[29] Ni Z Y, Liu Q H, Tang K C, et al. 2011 Nano. Lett. 12 113
[30] Li Y F, Liao Y L and Chen Z F 2014 Angew. Chem. Int. Edit. 53 7248
[31] Hu W, Wu X J, Li Z Y and Yang J L 2013 Nanoscale 5 9062
[32] Arrhenius S 1889 Zeit. Phys. Chem. 4 226
[33] Blankenburg S, Bieri M, Fasel R, M ü llen K, Pignedoli C A and Passerone D 2010 Small 6 2266
[34] Zhu Z Q 2006 J. Membr. Sci. 281 754
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!