Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070201    DOI: 10.1088/1674-1056/ac4cc0
GENERAL   Next  

Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation

Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平)
Department of Applied Mathematics, Donghua University, Shanghai 201620, China
Abstract  The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations. In this paper, we use a new form of variable separation to study novel soliton molecules and their interactions in (2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation. Dromion molecules, ring molecules, lump molecules, multi-instantaneous molecules, and their interactions are obtained. Then we draw corresponding images with maple software to study their dynamic behavior.
Keywords:  variable separation method      Hirota bilinear method      dromion solution      (2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation  
Received:  21 December 2021      Revised:  19 January 2022      Accepted manuscript online:  19 January 2022
PACS:  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  04.30.Nk (Wave propagation and interactions)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11371086, 11671258, and 11975145) and the Fund of Science and Technology Commission of Shanghai Municipality (Grant No. 13ZR1400100).
Corresponding Authors:  Hong-Cai Ma, Yi-Dan Gao     E-mail:  hongcaima@hotmail.com;gydana@163.com

Cite this article: 

Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平) Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 2022 Chin. Phys. B 31 070201

[1] Cao C W 1990 Phys. Lett. A 175 22
[2] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491
[3] Shen S F 2005 Commun. Theor. Phys. 44 779
[4] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385
[5] Lou S Y, Zhang S L and Qu C Z 2005 Chin. Phys. Lett. 22
[6] Zhang S L and Lou S Y 2004 Commun. Theor. Phys. 41 161
[7] Tang X Y and Lou S Y 2002 Commun. Theor. Phys. 38 1
[8] Tang X Y and Lou S Y 2003 Chin. Phys. Lett. 20 335
[9] Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448
[10] Lou S Y, Qian X M and Hu X B 2004 J. Phys. A:Math. Gen. 37 2401
[11] Qian X M, Lou S Y, and Hu X B 2004 Zeitschrift für Naturforschung A 59 645
[12] Lou S Y, Hu H C and Liu Q P 2003 Chin. Phys. Lett. 20 1413
[13] Hu H C, Lou S Y, Tang X Y and Liu Q P 2004 Chaos, Solitons and Fractals 22 327
[14] Tang X Y and Lou S Y 2009 Front. Phys. China 4 235
[15] Tang X Y and Liang Z F 2006 Phys. Lett. A 351 398
[16] Lou S Y, Zhang S L and Qu C Z 2005 Chin. Phys. Lett. 22 1029
[17] Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
[18] Lou S Y, Tang X Y and Zhang Y 2002 Phys. Rev. E 66 046601
[19] Jin X W and Lin J 2020 J. Magn. Magn. Mater. 502 166590
[20] Ma W X 2003 Phys. Lett. A 319 325
[21] Ma W X 2021 Math. Comput. Simul. 190 270
[22] Ma W X 2021 J. Geom. Phys. 165 104191
[23] Ma W X, Yong X and Lü X 2021 Wave Motion 103 102719
[24] Ma W X 2022 Physica D 430 133078
[25] Lou S Y 2020 J. Phys. Commun. 4 041002
[26] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[27] Zhao Q L, Lou S Y and Jia M 2020 Commun. Theor. Phys. 72 085005
[28] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[29] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 025002
[30] Yang X Y, Fan R and Li B 2020 Phys. Scripta 95 045213
[31] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[32] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[33] Ma H C, Huang H Y and Deng A P 2021 J. Geom. Phys. 170 104362
[34] Ma H C, Huang H Y and Deng A P 2021 Mod. Phys. Lett. B 35 8
[35] Ma H C, Cheng Q X and Deng A P 2020 Commun. Theor. Phys. 72 095001
[36] Ma H C, Gao Y D and Deng A P 2021 Mod. Phys. Lett. B 35 2150482
[37] Nimmo J J C, Gilson C R and Willox R 1993 Phys. Lett. A 180 337
[38] Seadawy A R, Ali A, and Helal M A 2021 Math. Meth. Appl. Sci. 44 14292
[39] Ashraf F, Younis M, Iqbal H, Rizvi S T R, Seadawy A R and Baleanu D 2020 Results Phys. 19 103661
[40] Kaplan M 2018 Chin. J. Phys. 56 2523
[41] Ma W X, He C H, Tang X Y and Ma J L 2019 Nonlinear Dyn. 95 29
[42] Luo L 2011 Phys. Lett. A 375 1059
[43] Kumar M and Tiwari A K 2018 Comput. Math. Appl. 75 1434
[44] Jia S L, Su J J, Hu L, Gao Y T and Deng G F 2019 Mod. Phys. Lett. B. 33 1950376
[45] Zhang C R, Tian H Y, Shen Y, Tian B and Liu S H 2021 Mod. Phys. Lett. B. 35 2150261
[46] Tang X Y, Cui C J and Cui Y J 2020 Appl. Math. Lett. 102 106109
[47] Li H M, Lin J, Ren B and Li Y S 2008 Phys. Rev. E 77 036605
[1] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[2] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[3] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[4] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[5] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[6] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[7] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[8] Superposition solitons in two-component Bose-Einstein condensates
Wang Xiao-Min (王晓敏), Li Qiu-Yan (李秋艳), Li Zai-Dong (李再东). Chin. Phys. B, 2013, 22(5): 050311.
[9] On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids
Hou Guo-Lin(侯国林) and Alatancang(阿拉坦仓). Chin. Phys. B, 2008, 17(8): 2753-2758.
[10] Periodic-soliton solutions of the (2+1)-dimensional Kadomtsev--Petviashvili equation
Zhaqilao(扎其劳) and Li Zhi-Bin(李志斌). Chin. Phys. B, 2008, 17(7): 2333-2338.
No Suggested Reading articles found!