|
|
Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation |
Hong-Cai Ma(马红彩)†, Yi-Dan Gao(高一丹)‡, and Ai-Ping Deng(邓爱平) |
Department of Applied Mathematics, Donghua University, Shanghai 201620, China |
|
|
Abstract The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations. In this paper, we use a new form of variable separation to study novel soliton molecules and their interactions in (2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation. Dromion molecules, ring molecules, lump molecules, multi-instantaneous molecules, and their interactions are obtained. Then we draw corresponding images with maple software to study their dynamic behavior.
|
Received: 21 December 2021
Revised: 19 January 2022
Accepted manuscript online: 19 January 2022
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
04.20.Jb
|
(Exact solutions)
|
|
04.30.Nk
|
(Wave propagation and interactions)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11371086, 11671258, and 11975145) and the Fund of Science and Technology Commission of Shanghai Municipality (Grant No. 13ZR1400100). |
Corresponding Authors:
Hong-Cai Ma, Yi-Dan Gao
E-mail: hongcaima@hotmail.com;gydana@163.com
|
Cite this article:
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平) Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 2022 Chin. Phys. B 31 070201
|
[1] Cao C W 1990 Phys. Lett. A 175 22 [2] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491 [3] Shen S F 2005 Commun. Theor. Phys. 44 779 [4] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385 [5] Lou S Y, Zhang S L and Qu C Z 2005 Chin. Phys. Lett. 22 [6] Zhang S L and Lou S Y 2004 Commun. Theor. Phys. 41 161 [7] Tang X Y and Lou S Y 2002 Commun. Theor. Phys. 38 1 [8] Tang X Y and Lou S Y 2003 Chin. Phys. Lett. 20 335 [9] Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448 [10] Lou S Y, Qian X M and Hu X B 2004 J. Phys. A:Math. Gen. 37 2401 [11] Qian X M, Lou S Y, and Hu X B 2004 Zeitschrift für Naturforschung A 59 645 [12] Lou S Y, Hu H C and Liu Q P 2003 Chin. Phys. Lett. 20 1413 [13] Hu H C, Lou S Y, Tang X Y and Liu Q P 2004 Chaos, Solitons and Fractals 22 327 [14] Tang X Y and Lou S Y 2009 Front. Phys. China 4 235 [15] Tang X Y and Liang Z F 2006 Phys. Lett. A 351 398 [16] Lou S Y, Zhang S L and Qu C Z 2005 Chin. Phys. Lett. 22 1029 [17] Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000 [18] Lou S Y, Tang X Y and Zhang Y 2002 Phys. Rev. E 66 046601 [19] Jin X W and Lin J 2020 J. Magn. Magn. Mater. 502 166590 [20] Ma W X 2003 Phys. Lett. A 319 325 [21] Ma W X 2021 Math. Comput. Simul. 190 270 [22] Ma W X 2021 J. Geom. Phys. 165 104191 [23] Ma W X, Yong X and Lü X 2021 Wave Motion 103 102719 [24] Ma W X 2022 Physica D 430 133078 [25] Lou S Y 2020 J. Phys. Commun. 4 041002 [26] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271 [27] Zhao Q L, Lou S Y and Jia M 2020 Commun. Theor. Phys. 72 085005 [28] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501 [29] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 025002 [30] Yang X Y, Fan R and Li B 2020 Phys. Scripta 95 045213 [31] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) [32] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501 [33] Ma H C, Huang H Y and Deng A P 2021 J. Geom. Phys. 170 104362 [34] Ma H C, Huang H Y and Deng A P 2021 Mod. Phys. Lett. B 35 8 [35] Ma H C, Cheng Q X and Deng A P 2020 Commun. Theor. Phys. 72 095001 [36] Ma H C, Gao Y D and Deng A P 2021 Mod. Phys. Lett. B 35 2150482 [37] Nimmo J J C, Gilson C R and Willox R 1993 Phys. Lett. A 180 337 [38] Seadawy A R, Ali A, and Helal M A 2021 Math. Meth. Appl. Sci. 44 14292 [39] Ashraf F, Younis M, Iqbal H, Rizvi S T R, Seadawy A R and Baleanu D 2020 Results Phys. 19 103661 [40] Kaplan M 2018 Chin. J. Phys. 56 2523 [41] Ma W X, He C H, Tang X Y and Ma J L 2019 Nonlinear Dyn. 95 29 [42] Luo L 2011 Phys. Lett. A 375 1059 [43] Kumar M and Tiwari A K 2018 Comput. Math. Appl. 75 1434 [44] Jia S L, Su J J, Hu L, Gao Y T and Deng G F 2019 Mod. Phys. Lett. B. 33 1950376 [45] Zhang C R, Tian H Y, Shen Y, Tian B and Liu S H 2021 Mod. Phys. Lett. B. 35 2150261 [46] Tang X Y, Cui C J and Cui Y J 2020 Appl. Math. Lett. 102 106109 [47] Li H M, Lin J, Ren B and Li Y S 2008 Phys. Rev. E 77 036605 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|