Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114701    DOI: 10.1088/1674-1056/abf108
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field

Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞)
School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Dielectrophoresis (DEP) technology has become important application of microfluidic technology to manipulate particles. By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP, our group proposed a device using a direct current (DC) electric field to achieve continuous particle separation. In this paper, the influence of the Joule heating effect on the continuous separation of particles is analyzed. Results show that the Joule heating effect is caused by the local electric field, and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage. Moreover, a non-uniform temperature distribution exists in the channel due to the Joule heating effect, and the temperature is the highest at the midpoint of the modulating electrodes. The channel flux can be enhanced, and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect. In addition, the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect; and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect. The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux. Parameter optimization of the separation device, such as the convective heat transfer coefficient of the channel wall, the length of modulating electrode, and the width of the channel, is performed.
Keywords:  dielectrophoresis      microvortices      Joule heating effect      particle separation  
Received:  09 February 2021      Revised:  16 March 2021      Accepted manuscript online:  23 March 2021
PACS:  47.57.jd (Electrokinetic effects)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572139).
Corresponding Authors:  Bo Chen     E-mail:  chbo76@hust.edu.cn

Cite this article: 

Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞) Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field 2021 Chin. Phys. B 30 114701

[1] Ebadi A, Farshchi Heydari M J, Toutouni R, Chaichypour B, Fathipour M and Jafari K 2019 SN. Appl. Sci. 1 1184
[2] Tang W, Zhu S, Jiang D, Zhu L, Yang J and Xiang N 2020 Lab on a Chip 20 3485
[3] Xiang N, Wang J, Li Q, Han Y, Huang D and Ni Z 2019 Anal. Chem. 91 10328
[4] Zhu S, Jiang F, Han Y, Xiang N and Ni Z 2020 Analyst 145 7103
[5] Bayareh M 2020 Chemical Engineering and Processing-Process Intensification 153 107984
[6] Al-Faqheri W, Thio T H G, Qasaimeh M A, Dietzel A, Madou M and Al-Halhouli A 2017 Microfluid. Nanofluid. 21 102
[7] Wu J, Cui Y, Xuan S and Gong X 2018 Microfluid. Nanofluid. 22 103
[8] Liu G, He F, Li X, Zhao H, Zhang Y, Li Z and Yang Z 2019 Microfluid. Nanofluid. 23
[9] Çetin B and Li D 2011 Electrophoresis 32 2410
[10] Zhao K, Larasati, Duncker B P and Li D 2019 Anal. Chem. 91 6304
[11] Hajari M, Ebadi A, Farshchi Heydari M J, Fathipour M and Soltani M 2020 Microsystem Technologies 26 751
[12] Pohl H A 1951 J. Appl. Phys. 22 869
[13] Zhao K and Li D 2018 ACS Appl. Mater. Interfaces 10 36572
[14] Zhang C, Khoshmanesh K, Mitchell A and Kalantar-Zadeh K 2010 Anal. Bioanal. Chem. 396 401
[15] Ji J L, Liu Y L, Ge Y, Xie S D, Zhang X, Sang S B, Jian A Q, Duan Q Q, Zhang Q and Zhang W D 2017 Chin. Phys. Lett. 34 046601
[16] Lewpiriyawong N, Yang C and Lam Y C 2010 Electrophoresis 31 2622
[17] Tang S Y, Zhu J, Sivan V, Gol B, Soffe R, Zhang W, Mitchell A and Khoshmanesh K 2015 Adv. Funct. Mater. 25 4445
[18] Nie X, Zhang Z, Han C, Yu D and Xing X 2019 Proceedings of the IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS) 8870644 39
[19] Zhang Z, Luo Y, Nie X, Yu D and Xing X 2020 Analyst 145 5603
[20] Sun M, Agarwal P, Zhao S, Zhao Y, Lu X and He X 2016 Anal. Chem. 88 8264
[21] Jia Y, Ren Y and Jiang H 2015 Electrophoresis 36 1744
[22] Yao J, Chen J, Cao X and Dong H 2019 Talanta 196 546
[23] Wu Z, Chen Y, Wang M and Chung A J 2016 Lab on a Chip 16 1278
[24] Warkiani M E, Khoo B L, Wu L, Tay A K, Bhagat A A, Han J and Lim C T 2016 Nat. Protoc. 11 134
[25] Yasukawa T, Yamada J, Shiku H, Matsue T and Suzuki M 2020 Micromachines (Basel) 11 883
[26] Xuan X 2008 Electrophoresis 29 33
[27] Cetin B and Li D 2008 Electrophoresis 29 994
[28] Das S, Das T and Chakraborty S 2006 Microfluid. Nanofluid. 2 37
[29] Vilkner T, Janasek D and Manz A 2004 Anal. Chem. 76 3373
[30] Das S and Chakraborty S 2007 AIChE J. 53 1086
[31] Kunti G, Dhar J, Bhattacharya A and Chakraborty S 2018 J. Appl. Phys. 123 244901
[32] Xuan X, Xu B, Sinton D and Li D 2004 Lab on a Chip 4 230
[33] Xuan X, Sinton D and Li D 2004 Int. J. Heat Mass Transfer 47 3145
[34] Sridharan S, Zhu J, Hu G and Xuan X 2011 Electrophoresis 32 2274
[35] Prabhakaran R A, Zhou Y, Patel S, Kale A, Song Y, Hu G and Xuan X 2017 Electrophoresis 38 572
[36] Yan Y, Guo D and Wen S 2017 Biochip Journal 11 196
[37] Hsieh S S and Yang T K 2008 Journal of Micromechanics and Microengineering 18 025025
[38] Horiuchi K and Dutta P 2004 Int. J. Heat Mass Transfer 47 3085
[39] Zhu J, Sridharan S, Hu G and Xuan X 2012 Journal of Micromechanics and Microengineering 22 075011
[40] Kale A, Patel S, Hu G and Xuan X 2013 Electrophoresis 34 674
[41] Kale A, Patel S, Qian S, Hu G and Xuan X 2014 Electrophoresis 35 721
[42] Hawkins B G and Kirby B J 2010 Electrophoresis 31 3622
[43] Aghilinejad A, Aghaamoo M, Chen X and Xu J 2018 Electrophoresis 39 869
[44] Gallo-Villanueva R C, Perez-Gonzalez V H, Cardenas-Benitez B, Jind B, Martinez-Chapa S O and Lapizco-Encinas B H 2019 Electrophoresis 40 1408
[45] Xie C, Chen B, Yan B and Wu J 2018 Appl. Math. Mech. 39 409
[46] Chao K, Chen B and Wu J 2010 Biomed. Microdevices 12 959
[47] Mirbozorgi S, Niazmand H and Renksizbulut M 2006 J. Fluids Eng. 128 1133
[48] Gallo-Villanueva R C, Sano M B, Lapizco-Encinas B H and Davalos R V 2014 Electrophoresis 35 352
[49] Aghilinejad A, Aghaamoo M, Chen X and Xu J 2018 Electrophoresis 39 869
[50] Tang G, Yan D, Yang C, Gong H, Chai J C and Lam Y C 2006 Electrophoresis 27 628
[51] Yang J, Huang Y, Wang X B, Becker F F and Gascoyne P R 2000 Biophys. J. 78 2680
[52] Piacentini N, Mernier G, Tornay R and Renaud P 2011 Biomicrofluidics 5 034122
[1] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[2] Dynamic resistive switching in a three-terminal device based on phase separated manganites
Wang Zhi-Qiang (王志强), Yan Zhi-Bo (颜志波), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037101.
[3] Vertical assembly of carbon nanotubes for via interconnects
Wei Qin-Qin (魏芹芹), Wei Zi-Jun (魏子钧), Ren Li-Ming (任黎明), Zhao Hua-Bo (赵华波), Ye Tian-Yang (叶天扬), Shi Zu-Jin (施祖进), Fu Yun-Yi (傅云义), Zhang Xing (张兴), Huang Ru (黄如). Chin. Phys. B, 2012, 21(8): 088103.
[4] Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres
Jiang Hong-Yuan(姜洪源), Ren Yu-Kun(任玉坤), and Tao Ye(陶冶). Chin. Phys. B, 2011, 20(5): 057701.
No Suggested Reading articles found!