Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024216    DOI: 10.1088/1674-1056/28/2/024216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks

Yu-Long Su(苏玉龙)1,2,3, Huan Feng(冯欢)1,3, Hui Hu(胡辉)1,3, Wei Wang(汪伟)1,3, Tao Duan(段弢)1,3, Yi-Shan Wang(王屹山)1, Jin-Hai Si(司金海)2, Xiao-Ping Xie(谢小平)1, He-Ning Yang(杨合宁)1,2,3, Xin-Ning Huang(黄新宁)1,3
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
2 Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonally-polarized four-wave mixing (FWM) effect, for ultra-high-speed polarization multiplexing (Pol-MUX) fiber networks such as 100-Gbps and 400-Gbps backbone networks. We use theoretical and experimental analysis of the vector theory of FWM to successfully achieve polarization separation and all-optical switching by utilizing a 100-Gbps dual polarization-quadrature phase shift keying (DP-QPSK) signal and two orthogonally-polarized pumps. Both of the polarization-separated QPSK signals have clear constellation diagrams, with root mean square (RMS) error vector magnitudes (EVMs) of 14.32% and 14.11% respectively. The wavelengths of idlers can be created at 30 different wavelengths, which are consistent with International Telecommunication Union-Telecommunication (ITU-T) wavelengths, by flexibly changing the wavelength of the pump light. Moreover, the idlers that have distinct wavelengths have power distributed in a range from -10 dBm to -15 dBm, which can support error-free transmission. The power penaltyis 5 dB lower than that of back-to-back (BTB) signal for both the X- and Y-polarization components measured at a bit error ratio (BER) of 3.8×10-3. Our experimental results indicate that this scheme has promising applications in future backbone networks.
Keywords:  polarization separation and switching      four-wave mixing      orthogonal polarization      100-Gbps dual polarization-quadrature phase shift keying  
Received:  20 November 2018      Revised:  23 December 2018      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0803900) and the National Natural Science Foundation of China (Grant No. 9163801).
Corresponding Authors:  Xin-Ning Huang     E-mail:  realkeo@126.com

Cite this article: 

Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁) Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks 2019 Chin. Phys. B 28 024216

[1] Winzer P and Essiambre R J 2006 J. Lightwave Technol. 24 4711
[2] Pfeiffer T 2015 J. Opt. Commun. 7 B38
[3] Lam C F, Liu H, Koley B, Zhao X X, V K and V G 2010 IEEE Commun. Mag. 48 32
[4] Tan M, Rosa P, Le S T, Phillips L D and Harper P 2015 Opt. Express 23 22181
[5] Khanna G, Rahman T, Man E D and Riccardi E 2016 IEEE Photon. Technol. Lett. 29 189
[6] Xu T, Shevchenko N, Lavery D, Semrau D, Liga G, Alvarado A, Killey R and Bayvel P 2017 Opt. Express 25 3311
[7] Zhang Z Y, Jiang W R, Wang B, Yang Y Q and Wang Z G 2018 Chin. Phys. B 27 013102
[8] Pan Y, Yan L S, Yi A L, Ji. L, Pan W, Luo B and Zou X H 2017 Opt. Lett. 42 4071
[9] Chen Z Y, Yan L S, Pan Y, Jiang L, Yi A L, Pan W and Luo B 2017 Light: Science & Applications 6 e16207
[10] Ji H C, Lee J H, Kim H, Park P J and Chung Y C 2009 Opt. Express 17 1169
[11] Steve X, Yan L S, Zhang B, Willner A E and Jiang J F 2007 Opt. Express 15 7407
[12] Koch B, Noe R, Sandel D, Mirvoda V and Omar J 2013 IEEE Photon. Technol. Lett. 25 798
[13] Xu F, Guo M Q, Wang L Qiao Y J and Tian H P 2016 Chin. Phys. B 25 084208
[14] Tian F, Zhang X G, Weng X, Xi L X, Zhang Y A and Zhang W B 2011 Chin. Phys. B 20 080702
[15] Gerstel O, Jinno M, Lord A and Ben S J 2012 IEEE Commun. Mag. 50 s12
[16] Kachris C and Tomkos L 2012 IEEE Commun. Surveys & Tutorials 14 1021
[17] Kameda Y, Hashimoto Y and Yorozu S 2008 IEICE Trans. Electron E91-C 333
[18] Hoang T M, Osman M M, Chagnon M, Qiu M and Patel D 2015 Opt. Commun. 356 269
[19] Cuik S, Xia W J, Shang J, Ke C J, Fu S N and Liu D M 2016 Opt. Commun. 366 200
[20] Papadimitriou G, Papazoglou C and Pomportsis A S 2003 J. Lightwave Technol. 21 384
[21] Wang Y and Cao X J 2011 IEEE Communications Surveys & Tutorials. 14 698
[22] Wen Y H and Feng K M 2015 IEEE Photon. Technol. Lett. 27 935
[23] Anthur A P, Zhou R, Duill S O, Walsh A J, Martin E, Venkitesh D and Barry L P 2016 Opt. Express 24 11749
[24] Lin Q and Agrawal G P 2004 Opt. Lett. 29 1114
[25] Ma J X, Yu J J, Yu C X and Zhou Z 2006 Opt. Commun. 260 522
[26] Uzunidis D, Matrakidis C and Stavdas A 2016 Opt. Commun. 378 22
[27] Mateo E, Zhu L K and Li G F 2008 Opt. Express 16 16124
[28] Radic S, Mckinstrie C J, Jopson R M, Centanni J C and Chraplyvy A R 2003 IEEE Photon. Technol. Lett. 15 957
[29] Cui Y D, Lu F F and Liu X M 2017 Sci. Rep. 7 40080
[30] Wang T, Niu M S, Bu M M, Han P G, Hao D Z, Yang J S and Song L K 2018 Acta Phys. Sin. 67 100701 (in Chinese)
[31] Li P, Wu D J, Liu S, Zhang Y, Guo X Y, Qi S X, Li Y and Zhao J L 2017 Chin. Phys. B 26 114201
[32] Wang Z N and Xie C J 2009 Opt. Express 17 3183
[33] Koch B, Noe R, Mirvoda V, Griesser H, Bayer S and Wernz H 2010 IEEE Photon. Technol. Lett. 22 1407
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[6] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[7] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[8] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[9] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[10] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[11] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[12] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[13] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[14] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
[15] Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber
Wang Tao (王涛), Sang Xin-Zhu (桑新柱), Yan Bin-Bin (颜玢玢), Ai Qi (艾琪), Li Yan (李妍), Chen Xiao (陈笑), Zhang Ying (张颖), Chen Gen-Xiang (陈根祥), Song Fei-Jun (宋菲君), Zhang Xia (张霞), Wang Kui-Ru (王葵如), Yuan Jin-Hui (苑金辉), Yu Chong-Xiu (余重秀), Xiao Feng (肖峰), Alameh Kamal. Chin. Phys. B, 2014, 23(6): 064217.
No Suggested Reading articles found!