Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024702    DOI: 10.1088/1674-1056/25/2/024702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Development of a new correlation to calculate permeability for flows with high Knudsen number

Esmaeil Dehdashti
Department of Mechanical Engineering, University of Tehran, Tehran 515-14395, Iran
Abstract  Flows with high Knudsen number play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow with high Knudsen number using modified lattice Boltzmann method (LBM) through a porous medium in a channel. The effect of collision between molecules and solid walls, which is required to accurately simulate transition flow regime, is taken into account using a modified relaxation time. Slip velocity on the wall, which is another significant difficulty in simulating transition flow regime, is captured using the slip reflection boundary condition (SRBC). The geometry of porous medium is considered as in-line and staggered. The results are in good agreement with previous works. A new correlation is obtained between permeability, Knudsen number and porosity for flows in transition flow regimes.
Keywords:  flow in porous micro-channel      lattice Boltzmann method      high Knudsen number      permeability  
Received:  01 June 2015      Revised:  12 August 2015      Accepted manuscript online: 
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  07.10.Cm (Micromechanical devices and systems)  
  47.61.Fg (Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS))  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
Corresponding Authors:  Esmaeil Dehdashti     E-mail:  iman.dehdashti@ut.ac.ir

Cite this article: 

Esmaeil Dehdashti Development of a new correlation to calculate permeability for flows with high Knudsen number 2016 Chin. Phys. B 25 024702

[1] Dehrouyeh-Semnani A M and Nikkhah-Bahrami M 2014 Composite Structures 122 425
[2] Dehrouyeh-Semnani A M and Nikkhah-Bahrami M 2015 Int. J. Eng. Sci. 86 20
[3] Dehrouyeh-Semnani A M and Nikkhah-Bahrami M 2015 Composite Structures 123 325
[4] Mohammad-Abadi M and Daneshmehr A 2015 Int. J. Eng. Sci. 87 83
[5] Mohammad-Abadi M and Daneshmehr A 2014 Int. J. Eng. Sci. 75 40
[6] Karniadakis G, Beskok A and Aluru N 2006 Microows and Nanoows: Fundamentals and Simulation (New York: Springer)
[7] Salem A M, Ismail G and Fathy R 2014 Chin. Phys. B 23 044402
[8] Song H Q, Yu M X, Zhu W Y, Zhang Y and Jiang S X 2013 Chin. Phys. Lett. 30 14701
[9] Namgyun J, Hyung C D and Ching-Long L 2006 Journal of Micromechanics and Microengineering 16 2240
[10] Suga K, Takenaka S, Ito T and Kaneda M 2010 Journal of Micromechanics and Microengineering 2 609
[11] Swift M R, Orlandini E, Osborn W R and Yeomans J M 1996 Phys. Rev. E 54 5041
[12] Soe M, Vahala G, Pavlo P, Vahala L and Chen H 1998 Phys. Rev. E 57 4227
[13] Chai Z H, Shi B C and Zheng L 2006 Chin. Phys. 15 1855
[14] Kwon Y 2006 Eng. Comp. 23 860
[15] Peng Y, Shu C and Chew Y T 2003 Phys. Rev. E 68 026701
[16] Agrawal A, Djenidi L and Antonia R 2005 J. Fluid Mech. 530 135
[17] Guo Z and Zhao T and Shi Y 2006 J. Appl. Phys. 99 074903
[18] Guo Z, Shi B, Zhao T and Zheng C 2007 Phys. Rev. E 76 056704
[19] Guo Z, Zheng C and Shi B 2008 Phys. Rev. E 77 036707
[20] Kim W T, Jhon M S, Zhou Y, Staroselsky I and Chen H 2005 J. Appl. Phys. 97 304
[21] Lee T and Lin C L 2005 Phys. Rev. E 71 046706
[22] Verhaeghe F, Luo L S and Blanpain B 2009 J. Comput. Phys. 228 147
[23] Shan X W, Yuan X F and Chen H D 2006 J. Fluid Mech. 550 413
[24] Chikatamarla S S and Karlin I V 2006 Phys. Rev. Lett. 97 190601
[25] Ansumali S, Karlin I V, Arcidiacono S, Abbas A and Prasianakis N 2007 Phys. Rev. Lett. 98 124502
[26] Kim S H, Pitsch H and Boyd I D 2008 J. Comput. Phys. 227 8655
[27] Zhang Y H, Gu X J, Barber R W and Emerson D R 2006 Phys. Rev. E 74 046704
[28] Zhang Y H, Tang G and Emerson D R 2008 Phys. Rev. E 77 046701
[29] Tang G H, Zhang Y H, Gu X J and Emerson D R 2008 Europhys. Lett. 83 40008
[30] Succi S, Karlin I V and Chen H 2002 Rev. Mod. Phys. 74 1203
[31] Pomeau B H Y and Frisch U 1986 Phys. Rev. Lett. 56 1505
[32] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511
[33] Ohwada T, Sone Y and Aoki K 1989 Physics of Fluids A: Fluid Dynamics 1 2042
[34] Toschi F and Succi S 2005 Europhys. Lett. 69 549
[35] Pollard W G and Present R D 1948 Phys. Rev. 73 762
[36] Nie X, Doolen G D and Chen S 2002 J. Stat. Phys. 107 279
[37] Succi S 2002 Phys. Rev. Lett. 89 064502
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[3] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[4] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[5] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[6] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[7] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[8] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[9] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[10] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[11] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[12] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[13] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[14] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[15] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
No Suggested Reading articles found!