Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124302    DOI: 10.1088/1674-1056/25/12/124302
SPECIAL TOPIC—Acoustics Prev   Next  

Improving the performance of acoustic invisibility with multilayer structure based on scattering analysis

Chen Cai(蔡琛)1, Yin Yuan(袁樱)2, Wei-Wei Kan(阚威威)3, Jing Yang(杨京)1, Xin-Ye Zou(邹欣晔)1
1. Key Laboratory of Modern Acoustics, MOE, and Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093, China;
2. The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China;
3. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

In this paper, acoustic scattering from the system comprised of a cloaked object and the multilayer cloak with only one single pair of isotropic media is analyzed with a recursive numerical method. The designed acoustic parameters of the isotropic cloak media are assumed to be single-negative, and the resulting cloak can reduce acoustic scattering from an acoustic sensor while allowing it to receive external information. Several factors that may influence the performance of the cloak, including the number of layers and the acoustic dissipation of the medium are fully analyzed. Furthermore, the possibility of achieving acoustic invisibility with positive acoustic parameters is proposed by searching the optimum value in the parameter space and minimizing the scattering cross-section.

Keywords:  metamaterials      acoustic cloaking      scattering      invisibility  
Received:  29 April 2016      Revised:  23 June 2016      Accepted manuscript online: 
PACS:  43.20.-f (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  62.90.+k (Other topics in mechanical and acoustical properties of condensed matter)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274168, 11374157, 11174138, 11174139, 11222442, and 81127901) and the National Basic Research Program of China (Grant Nos. 2010CB327803 and 2012CB921504).

Corresponding Authors:  Xin-Ye Zou     E-mail:  xyzou@nju.edu.cn

Cite this article: 

Chen Cai(蔡琛), Yin Yuan(袁樱), Wei-Wei Kan(阚威威), Jing Yang(杨京), Xin-Ye Zou(邹欣晔) Improving the performance of acoustic invisibility with multilayer structure based on scattering analysis 2016 Chin. Phys. B 25 124302

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[3] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[4] Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
[5] Guild M D, Haberman M R and Alú A 2010 J. Acoust. Soc. Am. 128 2374
[6] Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301
[7] Cai L, Wen J H, Yu D L, Lu Z M and Wen X S 2014 Chin. Phys. Lett. 31 094303
[8] Gao D B and Zeng X W 2012 Chin. Phys. Lett. 29 114302
[9] Ying C and Liu X J 2009 Chin. Phys. Lett. 26 153
[10] Lai Y, Chen H, Zhang Z Q and Chan C 2009 Phys. Rev. Lett. 102 093901
[11] Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[12] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Phys. Rev. Lett. 101 204301
[13] Fok L and Zhang X 2011 Phys. Rev. B 83 214304
[14] Zhang Z, Li R Q, Liang B, Zou X Y and Cheng J C 2015 Chin. Phys. B 24 024301
[15] Ke M Z, Qiu C Y, Peng S S and Liu Z Y 2012 Physics 41 663 (in Chinese)
[16] Zhu X, Liang B, Kan W, Zou X and Cheng J 2011 Phys. Rev. Lett. 106 014301
[17] Cai C, Zhu X F, Xu T, Zou X Y, Liang B and Cheng J C 2015 Ann. Phys. (New York) 358 83
[18] Zhu X F, Zou X Y, Zhou X W, Liang B and Cheng J C 2012 Chin. Phys. Lett. 29 014102
[19] Xu T, Zhu X F, Liang B, Li Y, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 033509
[20] Cai L W and Sanchez-Dehesa J 2007 New J. Phys. 9 450
[21] Cai L W and Sanchez-Dehesa J 2008 J. Acoust. Soc. Am. 124 2715
[22] Yuan L Y, Xiang Y, Lu J and Jiang H H 2015 Chin. Phys. B 24 124301
[23] Zhang S, Zhang Y and Gao X W 2014 Chin. Phys. B 23 124301
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[6] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[15] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
No Suggested Reading articles found!