Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124205    DOI: 10.1088/1674-1056/25/12/124205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectra of spontaneous Raman scattering in taper-drawn micro/nano-fibers

Yingxin Xu(徐颖鑫)3, Liang Cui(崔亮)1, Xiaoying Li(李小英)1, Cheng Guo(郭骋)1, Yuhang Li(李宇航)2, Zhongyang Xu(徐忠扬)2, Lijun Wang(王力军)2, Wei Fang(方伟)3
1. College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Key Laboratory of Optoelectronics Information Technology of Ministry of Education, Tianjin 300072, China;
2. Joint Institute for Measurement Science, Tsinghua University, Beijing 100084, China;
3. Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  

We study the spontaneous Raman scattering (RS) in taper-drawn micro/nano-fibers (MNFs) by employing the photon counting technique. The spectra of RS in five MNFs, which are fabricated by using different heating flames (hydrogen flame or butane flame) and with different diameters, are measured within a frequency shift range of 1435 cm-1-3200 cm-1. From the measured spectra, we observe the RS peaks originated from silica and a unique RS peak with a frequency shift of ~2905 cm-1 (~87.2 THz). Unlike the former ones, the latter one is not observable in conventional optical fibers. Furthermore, the unique peak becomes obvious and starts to rapidly increase with the decrease of the diameter of MNFs when the diameter is smaller than 2 μm, and the intensity of the unique peak significantly depends on the heating flame used in the fabricating process. Our investigation is useful for the entanglement generation or optical sensing using taper-drawn MNFs.

Keywords:  nonlinear optics      micro/nano-fibers      Raman scattering  
Received:  05 July 2016      Revised:  29 August 2016      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11304222 and 11527808) and the State Key Development Program for Basic Research of China (Grant No. 2014CB340103).

Corresponding Authors:  Liang Cui, Xiaoying Li     E-mail:  lcui@tju.edu.cn;xiaoyingli@tju.edu.cn

Cite this article: 

Yingxin Xu(徐颖鑫), Liang Cui(崔亮), Xiaoying Li(李小英), Cheng Guo(郭骋), Yuhang Li(李宇航), Zhongyang Xu(徐忠扬), Lijun Wang(王力军), Wei Fang(方伟) Spectra of spontaneous Raman scattering in taper-drawn micro/nano-fibers 2016 Chin. Phys. B 25 124205

[1] Ferraro J R and Nakamoto K 1994 Introductory Raman Spectroscopy (Academic Press)
[2] Jalali B, Raghunathan V, Dimitropoulos D and Boyraz O 2006 IEEE J. Sel. Top. Quantum Electron. 12 412
[3] Islam M N 2002 IEEE J. Sel. Top. Quantum Electron. 8 548
[4] Tang R, Voss P L, Lasri J, Devgan P and Kumar P 2004 Opt. Lett. 29 2372
[5] Li X, Voss P, Chen J, Lee K and Kumar P 2005 Opt. Express 13 2236
[6] Collins M J, Clark A S, He J, Choi D Y, Williams R J, Judge A C, Madden S J, Withford M J, Steel M J, Luther-Davies B, Xiong C and Eggleton B J 2012 Opt. Lett. 37 3393
[7] Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641
[8] Foster M A, Turner A C, Lipson M and Gaeta A L 2008 Opt. Express 16 1300
[9] Brambilla G 2010 Opt. Fiber Technol. 16 331
[10] Garcia-Fernandez R, Alt W, Bruse F, Dan C, Karapetyan K, Rehband O, Stiebeiner A, Wiedemann U, Meschede D and Rauschenbeutel A 2011 Appl. Phys. B 105 3
[11] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
[12] Birks T A, Wadsworth W J and Russell P S J 2000 Opt. Lett. 25 1415
[13] Richard S 2010 J. Opt. Soc. Am. B 27 1504
[14] Ismaeel R, Lee T, Ding M, Broderick N G R and Brambilla G 2012 Opt. Lett. 37 5121
[15] Li Y H, Zhao Y Y and Wang L J 2012 Opt. Lett. 37 3441
[16] Shan L, Pauliat G, Vienne G, Tong L and Lebrun S 2013 Appl. Phys. Lett. 102 201110
[17] Cui L, Li X, Guo C, Li Y H, Xu Z Y, Wang L J and Fang W 2013 Opt. Lett. 38 5063
[18] Shin W, Ryu U and Oh K 2002 Electron. Lett. 38 214
[19] Song Y J, Hu M L, Wang C L, Tian Z, Xing Q R, Chai L and Wang C Y 2008 IEEE Photon. Technol. Lett. 20 1088
[20] Agrawal G P 2001 Nonlinear Fiber Optics, 4th edn. (San Diego:Academic Press)
[21] Socrates G 2001 Infrared Raman Characteristic Group Frequencies:Tables and Charts, 3rd edn. (John Wiley & Sons Ltd.)
[22] Kien F L, Liang J Q, Hakuta K and Balykin V I 2004 Opt. Commun. 242 445
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[5] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[6] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[7] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[8] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[9] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[10] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[11] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[12] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[13] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
No Suggested Reading articles found!