Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084210    DOI: 10.1088/1674-1056/abff47
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber

Lu-Lu Xu(徐路路)1,3,4, Ying-Ying Wang(王莹莹)1,3,4, Li Jiang(江丽)1,3,4, Pei-Long Yang(杨佩龙)1,3,4, Lei Zhang(张磊)2, and Shi-Xun Dai(戴世勋)1,3,4,†
1 Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China;
2 Research and Development Center, Yangtze Optical Fiber and Cable Company Ltd, Wuhan 430073, China;
3 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China;
4 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
Abstract  We demonstrate multiwavelength Brillouin fiber lasers (MWBFLs) with double-frequency spacing based on a small-core fiber (SCF) and a standard single-mode fiber (SMF), which have core diameters of 5 and 8.8 μm, respectively. Experimental results show that the SCF-based MWBFL exhibits a higher laser output power and a lower pump threshold. The output powers of the SCF-based MWBFL are > 1.4 times those of the SMF-based MWBFL. Moreover, the threshold power required to generate each channel of the SCF-based MWBFL is 59% that of the SMF-based MWBFL. When the same pump power of 180 mW is injected, the number of laser channels generated for the SCF-based MWBFL is 13, which is twice that generated for the SMF-based MWBFL. In addition, the SCF-based MWBFL exhibits good wavelength tunability from 1535 to 1565 nm and temporal stability over an hour.
Keywords:  nonlinear optics      fiber laser      small-core fiber      stimulated Brillouin scattering  
Received:  01 April 2021      Revised:  30 April 2021      Accepted manuscript online:  10 May 2021
PACS:  42.55.Wd (Fiber lasers)  
  42.81.-i (Fiber optics)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61875094), China Postdoctoral Science Foundation (Grant No. 2018M642386), and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Shi-Xun Dai     E-mail:  daishixun@nbu.edu.cn

Cite this article: 

Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋) A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber 2021 Chin. Phys. B 30 084210

[1] Garmire E 2018 Int. J. Opt. 2018 1
[2] Kobyakov A, Sauer M and Chowdhury D 2010 Adv. Opt. Photonics 2 1
[3] Chraplyvy A R 1990 J. Light. Technol. 8 1548
[4] Tian X, Zhao X, Wang M and Wang Z 2020 Opt. Lett. 45 4802
[5] Tei K and Yamaguchi S 2020 Opt. Express 28 17793
[6] Hu X Y, Chen W, Tu X B and Zhou M 2014 Chin. Phys. B 23 124208
[7] Yang F, Gyger F and Thévenaz L 2020 Nat. Photon. 14 700
[8] Li W S, Ba D X and Lv Z W 2019 Chin. Phys. B 28 024212
[9] Wu Z, Shen Q, Zhan L, Liu J, Yuan W and Wang Y 2010 IEEE Photon. Technol. Lett. 22 568
[10] Al-Alimi A W, Cholan N A, Yaacob M H, Abas A F, Alresheedi M T and Mahdi M A 2017 Opt. Express 25 19382
[11] Zhang Z X, Wu J, Xu K, Hong X B and Lin J T 2010 Chin. Phys. B 19 064209
[12] Bao X, Wan Y, Zou L and Chen L 2005 Opt. Lett. 30 827
[13] Xiang D, Lu P, Xu Y, Chen L and Bao X 2016 Opt. Lett. 41 4839
[14] Yuan Y, Yao Y, Yi M, Guo B and Tian J 2014 Opt. Express 22 15352
[15] Shahi S, Harun S W, Shahabuddin N S, Shirazi M R and Ahmad H 2009 Opt. Laser Technol. 41 198
[16] Shee Y, Al-Mansoori M, Ismail A, Hitam S and Mahdi M 2011 Opt. Express 19 1699
[17] Tang J, Sun J, Chen T and Zhou Y 2011 Opt. Fiber Technol. 17 608
[18] Qian L, Fen D, Xie H and Sun J 2015 Opt. Commun. 340 74
[19] Jiang L, Wang Y, Yang P, Zhang L, Yang L, Dai S and Lou C 2020 Opt. Commun. 459 125040
[20] Wang Y, Xu L, Jiang L, Dai S, Yang P and Yi L 2021 Opt. Commun. 484 126678
[21] Randoux S and Zemmouri J 1999 Phys. Rev. A 59 1644
[22] Nikles M, Thevenaz L and Robert P A 1997 J. Light. Technol. 15 1842
[23] Koyamada Y, Sato S, Nakamura S, Sotobayashi H and Chujo W 2004 J. Light. Technol. 22 631
[24] Dragic P D 2009 Electron. Lett. 45 256
[25] Beugnot J C and Laude V 2012 Phys. Rev. B 86 224304
[26] Hu K, Kabakova I V, Lefrancois S, Hudson D D, He S and Eggleton B J 2014 Opt. Express 22 31884
[27] Tang J, Sun J, Zhao L, Chen T, Huang T and Zhou Y 2011 Opt. Express 19 14682
[28] Ahmad H, Samion M Z, Kamely A A, Wang S, Wang Y and Sahu J K 2020 J. Light. Technol. 38 6886
[29] Iezzi V L, Büttner T F S, Tehranchi A, Loranger S, Kabakova I V, Eggleton B J and Kashyap R 2016 New J. Phys. 18 055003
[30] Cowle G J, Stepanov D Y and Chieng Y T 1997 J. Light. Technol. 15 1198
[31] Tehranchi A, Iezzi V L, Loranger S and Kashyap R 2016 IEEE J. Quantum Electron. 52 1
[32] Abedin K S 2006 Opt. Express 14 4037
[33] Wang X, Yang Y, Liu M, Yuan Y, Sun Y, Gu Y and Yao Y 2016 Appl. Opt. 55 6475
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[5] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[6] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[7] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[10] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[11] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[12] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[13] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[14] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[15] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
No Suggested Reading articles found!