Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124206    DOI: 10.1088/1674-1056/25/12/124206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cascade correlation-enhanced Raman scattering in atomic vapors

Hong-Mei Ma(马红梅), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华)
Department of Physics, School of Physics and Material Science, East China Normal University, Shanghai 200062, China
Abstract  

A new Raman process can be used to realize efficient Raman frequency conversion by coherent feedback at low light intensity[Chen B, Zhang K, Bian C L, Qiu C, Yuan C H, Chen L Q, Ou Z Y, and Zhang W P 2013 Opt. Express 21, 10490]. We present a theoretical model to describe this enhanced Raman process, termed as cascade correlation-enhanced Raman scattering, which is a Raman process injected by a seeded light field. It is correlated with the initially prepared atomic spin excitation and driven by the quasi-standing-wave pump fields, and the processes are repeated until the Stokes intensities are saturated. Such an enhanced Raman scattering may find applications in quantum information, nonlinear optics, and optical metrology due to its simplicity.

Keywords:  frequency conversions      enhanced Raman scattering      standing-wave pump fields  
Received:  22 June 2016      Revised:  25 July 2016      Accepted manuscript online: 
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474095, 11274118, and 91536114).

Corresponding Authors:  Li-Qing Chen, Chun-Hua Yuan     E-mail:  lqchen@phy.ecnu.edu.cn;chyuan@phy.ecnu.edu.cn

Cite this article: 

Hong-Mei Ma(马红梅), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华) Cascade correlation-enhanced Raman scattering in atomic vapors 2016 Chin. Phys. B 25 124206

[1] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[2] Hammerer K, Sø rensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[3] Li L, Dudin Y O and Kuzmich A 2013 Nature 498 466
[4] Chang D E, Vuletić V and Lukin M D 2014 Nat. Photon. 8 685
[5] Xu Y, Chen M, Li Z W, Bai Z X, Yang C, Chen L Y, Li G and Liu Y 2013 Chin. Phys. Lett. 30 084202
[6] Boyd R W 2003 Nonlinear Optics (San Diego:Academic)
[7] Lei C M, Song R, Jin A J and Hou J 2015 Chin. Phys. Lett. 32 074202
[8] Cai X L, Zhou C H, Zhou D J, Liu J B, Guo J W and Gui L 2015 Chin. Phys. Lett. 32 114207
[9] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[10] Schmidt H and Imamoğlu A 1996 Opt. Lett. 21 1936
[11] Jain M, Xia H, Yin G Y, Merriam A J and Harris S E 1996 Phys. Rev. Lett. 77 4326
[12] Merriam A J, Sharpe S J, Shverdin M, Manuszak D, Yin G Y and Harris S E 2000 Phys. Rev. Lett. 84 5308
[13] Chen L Q, Zhang G W, Yuan C H, Jing J, Ou Z Y and Zhang W P 2009 Appl. Phys. Lett. 95 041115
[14] Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y and Zhang W P 2010 Phys. Rev. Lett. 105 133603
[15] Yuan C H, Chen L Q, Jing J, Ou Z Y and Zhang W P 2010 Phys. Rev. A 82 013817
[16] Fleischhauer M, Lukin M D, Matsko A B and Scully M O 2000 Phys. Rev. Lett. 84 3558
[17] Zibrov A S, Lukin M D and Scully M O 1999 Phys. Rev. Lett. 83 4049
[18] Berre M L, Ressayre E and Tallet A 1991 Phys. Rev. A 43 6345
[19] Berre M L, Ressayre E and Tallet A 1991 Phys. Rev. A 44 5958
[20] Chen B, Zhang K, Bian C L, Qiu C, Yuan C H, Chen L Q, Ou Z Y and Zhang W P 2013 Opt. Express 21 10490
[21] Yuan C H, Chen L Q, Ou Z Y and Zhang W P 2013 Phys. Rev. A 87 053835
[22] Raymer M G and Mostowski J 1981 Phys. Rev. A 24 1980
[23] Lu C P, Yuan C H and Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese)
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[3] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[4] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[5] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[6] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[7] Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field
Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅). Chin. Phys. B, 2017, 26(2): 023301.
[8] Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping
Chao Zhang(张超), Bao-Qin Chen(陈宝琴), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(9): 095203.
[9] Preparation of SiO2@Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection
Hou Meng-Jing (侯孟婧), Zhang Xian (张弦), Cui Xiao-Yang (崔肖阳), Liu Can (刘灿), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军). Chin. Phys. B, 2015, 24(3): 034203.
[10] An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays
Wang Ming-Li (王明利), Zhang Chang-Xing (张常兴), Wu Zheng-Long (吴正龙), Jing Xi-Li (井西利), Xu Hai-Jun (许海军). Chin. Phys. B, 2014, 23(6): 067802.
[11] Enormous enhancement of electric field in active gold nanoshells
Jiang Shu-Min (蒋书敏), Wu Da-Jian (吴大建), Wu Xue-Wei (吴雪炜), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2014, 23(4): 047807.
[12] Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression
Wang Jun (王军), Huang Li-Qing (黄丽清), Tong Hui-Min (童慧敏), Zhai Li-Peng (翟立鹏), Yuan Lin (袁林), Zhao Li-Hua (赵丽华), Zhang Wei-Wei (张薇薇), Shan Dong-Zhi (单冬至), Hao Ai-Wen (郝爱文), Feng Xue-Hong (冯雪红). Chin. Phys. B, 2013, 22(4): 047301.
[13] TiO2/Ag composite nanowires for a recyclable surface enhanced Raman scattering substrate
Deng Chao-Yue (邓超越), Zhang Gu-Ling (张谷令), Zou Bin (邹斌), Shi Hong-Long (施洪龙), Liang Yu-Jie (梁玉洁), Li Yong-Chao (李永超), Fu Jin-Xiang (付金祥), Wang Wen-Zhong (王文忠). Chin. Phys. B, 2013, 22(10): 106102.
[14] Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios
Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Wang Deng-Ke(王登科), Li Chen(李晨), Tian Yuan(田园), Xu Zhi-Chuan(徐桎川), Wang Chun-Ming(王春明), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2011, 20(7): 076103.
[15] Influence of local environment on the intensity of the localized surface plasmon polariton of Ag nanoparticles
Huang Qian(黄茜), Zhang Xiao-Dan(张晓丹), Zhang He(张鹤), Xiong Shao-Zhen(熊绍珍), Geng Wei-Dong(耿卫东), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(4): 047304.
No Suggested Reading articles found!