|
|
Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations |
Hong-Xia Liu(柳红霞)1, Fu-Ling Tang(汤富领)1, Hong-Tao Xue(薛红涛)1, Yu Zhang(张宇)1, Yu-Wen Cheng(程育汶)1, Yu-Dong Feng(冯煜东)2 |
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2. Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China |
|
|
Abstract Using the first-principles plane-wave calculations within density functional theory, the perfect bi-layer and monolayer terminated WZ-CIS (100)/WZ-CdS (100) interfaces are investigated. After relaxation the atomic positions and the bond lengths change slightly on the two interfaces. The WZ-CIS/WZ-CdS interfaces can exist stably, when the interface bonding energies are -0.481 J/m2 (bi-layer terminated interface) and -0.677 J/m2 (monolayer terminated interface). Via analysis of the density of states, difference charge density and Bader charges, no interface state is found near the Fermi level. The stronger adhesion of the monolayer terminated interface is attributed to more electron transformations and orbital hybridizations, promoting stable interfacial bonds between atoms than those on a bi-layer terminated interface.
|
Received: 25 April 2016
Revised: 27 August 2016
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
71.22.+i
|
(Electronic structure of liquid metals and semiconductors and their Alloys)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057). |
Corresponding Authors:
Fu-Ling Tang
E-mail: tfl03@mails.tsinghua.edu.cn
|
Cite this article:
Hong-Xia Liu(柳红霞), Fu-Ling Tang(汤富领), Hong-Tao Xue(薛红涛), Yu Zhang(张宇), Yu-Wen Cheng(程育汶), Yu-Dong Feng(冯煜东) Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations 2016 Chin. Phys. B 25 123101
|
[1] |
He Y B, Kriegseis W, Meyer B K, Polity A and Serafin M 2003 Appl. Phys. Lett. 83 1743
|
[2] |
Wätjen J T, Scragg J J, Ericson T, Edoff M and Platzer-Björkman C 2013 Thin Solid Films 535 31
|
[3] |
Bandyopadhyaya S, Chaudhuri S and Pal A K 2000 Sol. Energy Mater. Sol. Cells 60 323
|
[4] |
Klaer J, Bruns J, Henninger R, Siemer K, Klenk R, Ellmer K and Bräunig D 1998 Semicond. Sci. Technol. 13 1456
|
[5] |
Wang Z D, Mo X L, Li J, Sun D L and Chen G R 2009 J. Alloys Compd. 487 L1
|
[6] |
Heidemann F, Gutay L, Meeder A and Bauer G H 2009 Thin Solid Films 517 2427
|
[7] |
Gusain M, Kumar P and Nagarajan R 2013 RSC Adv. 3 18863
|
[8] |
Yin Z, Hu Z L, Ye H H, Teng F, Yang C H and Tang A W 2014 Appl. Surf. Sci. 307 489
|
[9] |
Tomi S, Bernasconi L, Searle B G and Harrison N M 2014 J. Phys. Chem. C 118 14478
|
[10] |
Sheng X, Wang L, Luo Y P and Yang D R 2011 Nanoscale Res. Lett. 6 562
|
[11] |
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics 19 894
|
[12] |
Priyam A, Chatterjee A, Bhattacharya S C and Saha A 2007 J. Cryst. Growth 304 416
|
[13] |
Barnham K, Marques J L, Hassard J and O'Brien P 2000 Appl. Phys. Lett. 76 1197
|
[14] |
Cao H Q, Wang G Z, Zhang S C, Zhang X R and Daniel R 2006 Inorg. Chem. 45 5103
|
[15] |
Shafaay B A 2014 J. Chem. Bio. Phy. Sci. Sec. C 4 3606
|
[16] |
Xiong Y S, Zhang J, Huang F, Ren G Q, Liu W Z, Li D S, Wang C and Lin Z 2008 J. Phys. Chem. C 112 9229
|
[17] |
Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 1183
|
[18] |
Pan A L, Wang S Q, Liu R B, Li C R and Zou B S 2005 Small 11 1058
|
[19] |
Huang W C, Tseng C H, Chang S H, Tuan H Y, Chiang C C, Lyu L M and Huang M H 2012 Langmuir 28 8496
|
[20] |
Liu H X, Tang F L, Xue H T, Zhang Y and Feng Y D 2015 Appl. Surf. Sci. 351 382
|
[21] |
Zhang Y, Tang F L, Xue H T, Lu W J, Liu J F and Huang M 2015 Physica E 66 342
|
[22] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[23] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[24] |
Yu J, Lin X, Wang J J, Chen J and Huang W D 2009 Appl. Surf. Sci. 255 9032
|
[25] |
Ma L C, Zhang J M and Xu K W 2013 Physica E 50 1
|
[26] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[27] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Zhou J G, Causon D M, Mingham C G and Ingram D M 2001 J. Comput. Phys. 168 1
|
[29] |
Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
|
[30] |
Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
|
[31] |
Liechtenstein A L, Anisimov V L and Zaanen J 1995 Phys. Rev. B 52 5467
|
[32] |
Lany S and Zunger A 2005 Phys. Rev. B 72 035215
|
[33] |
Qi Y X, Liu Q C, Tang K B, Liang Z H, Ren Z B and Liu X M 2009 J. Phys. Chem. C 113 3939
|
[34] |
Pan D C, An L J, Sun Z M, Hou W, Yang Y, Yang Z Z and Lu Y F 2008 J. Am. Chem. Soc. 130 5620
|
[35] |
Knudson M D, Gupta Y M and Kunz A B 1999 Phys. Rev. B 59 11704
|
[36] |
Grünwald M, Zayak A, Neaton J B, Geissler P L and Rabani E 2012 J. Chem. Phys. 136 234111
|
[37] |
Xue H G, Shen Z Q and Li C M 2005 Biosens. Bioelectron. 20 2330
|
[38] |
Zhou F F, Chen Q M, Chen J, Wang T T, Jia Z, Dou X M and Zhuang S L 2014 Opt. Instrum. 36 342
|
[39] |
Madelung O 2004 Semiconductors:data handbook (New York:Springer) p. 289
|
[40] |
Deng H X, Li S S, Li J B and Wei S H 2012 Phys. Rev. B 85 195328
|
[41] |
Wang B D, Dai J H, Wu X, Song Y and Yang R 2015 Intermetallics 60 58
|
[42] |
Siegel D J, Hector L G and Adams J B 2002 Surf. Sci. 498 321
|
[43] |
Lu Z S, Li S S, Chen C and Yang Z X 2013 Acta. Phys. Sin. 62 117301 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|