Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 123101    DOI: 10.1088/1674-1056/25/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations

Hong-Xia Liu(柳红霞)1, Fu-Ling Tang(汤富领)1, Hong-Tao Xue(薛红涛)1, Yu Zhang(张宇)1, Yu-Wen Cheng(程育汶)1, Yu-Dong Feng(冯煜东)2
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2. Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Abstract  

Using the first-principles plane-wave calculations within density functional theory, the perfect bi-layer and monolayer terminated WZ-CIS (100)/WZ-CdS (100) interfaces are investigated. After relaxation the atomic positions and the bond lengths change slightly on the two interfaces. The WZ-CIS/WZ-CdS interfaces can exist stably, when the interface bonding energies are -0.481 J/m2 (bi-layer terminated interface) and -0.677 J/m2 (monolayer terminated interface). Via analysis of the density of states, difference charge density and Bader charges, no interface state is found near the Fermi level. The stronger adhesion of the monolayer terminated interface is attributed to more electron transformations and orbital hybridizations, promoting stable interfacial bonds between atoms than those on a bi-layer terminated interface.

Keywords:  first-principles calculation      WZ-CIS/WZ-CdS interface      density of states      interface bonding energy      interface states  
Received:  25 April 2016      Revised:  27 August 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).

Corresponding Authors:  Fu-Ling Tang     E-mail:  tfl03@mails.tsinghua.edu.cn

Cite this article: 

Hong-Xia Liu(柳红霞), Fu-Ling Tang(汤富领), Hong-Tao Xue(薛红涛), Yu Zhang(张宇), Yu-Wen Cheng(程育汶), Yu-Dong Feng(冯煜东) Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations 2016 Chin. Phys. B 25 123101

[1] He Y B, Kriegseis W, Meyer B K, Polity A and Serafin M 2003 Appl. Phys. Lett. 83 1743
[2] Wätjen J T, Scragg J J, Ericson T, Edoff M and Platzer-Björkman C 2013 Thin Solid Films 535 31
[3] Bandyopadhyaya S, Chaudhuri S and Pal A K 2000 Sol. Energy Mater. Sol. Cells 60 323
[4] Klaer J, Bruns J, Henninger R, Siemer K, Klenk R, Ellmer K and Bräunig D 1998 Semicond. Sci. Technol. 13 1456
[5] Wang Z D, Mo X L, Li J, Sun D L and Chen G R 2009 J. Alloys Compd. 487 L1
[6] Heidemann F, Gutay L, Meeder A and Bauer G H 2009 Thin Solid Films 517 2427
[7] Gusain M, Kumar P and Nagarajan R 2013 RSC Adv. 3 18863
[8] Yin Z, Hu Z L, Ye H H, Teng F, Yang C H and Tang A W 2014 Appl. Surf. Sci. 307 489
[9] Tomi S, Bernasconi L, Searle B G and Harrison N M 2014 J. Phys. Chem. C 118 14478
[10] Sheng X, Wang L, Luo Y P and Yang D R 2011 Nanoscale Res. Lett. 6 562
[11] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics 19 894
[12] Priyam A, Chatterjee A, Bhattacharya S C and Saha A 2007 J. Cryst. Growth 304 416
[13] Barnham K, Marques J L, Hassard J and O'Brien P 2000 Appl. Phys. Lett. 76 1197
[14] Cao H Q, Wang G Z, Zhang S C, Zhang X R and Daniel R 2006 Inorg. Chem. 45 5103
[15] Shafaay B A 2014 J. Chem. Bio. Phy. Sci. Sec. C 4 3606
[16] Xiong Y S, Zhang J, Huang F, Ren G Q, Liu W Z, Li D S, Wang C and Lin Z 2008 J. Phys. Chem. C 112 9229
[17] Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 1183
[18] Pan A L, Wang S Q, Liu R B, Li C R and Zou B S 2005 Small 11 1058
[19] Huang W C, Tseng C H, Chang S H, Tuan H Y, Chiang C C, Lyu L M and Huang M H 2012 Langmuir 28 8496
[20] Liu H X, Tang F L, Xue H T, Zhang Y and Feng Y D 2015 Appl. Surf. Sci. 351 382
[21] Zhang Y, Tang F L, Xue H T, Lu W J, Liu J F and Huang M 2015 Physica E 66 342
[22] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Yu J, Lin X, Wang J J, Chen J and Huang W D 2009 Appl. Surf. Sci. 255 9032
[25] Ma L C, Zhang J M and Xu K W 2013 Physica E 50 1
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Zhou J G, Causon D M, Mingham C G and Ingram D M 2001 J. Comput. Phys. 168 1
[29] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[30] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
[31] Liechtenstein A L, Anisimov V L and Zaanen J 1995 Phys. Rev. B 52 5467
[32] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[33] Qi Y X, Liu Q C, Tang K B, Liang Z H, Ren Z B and Liu X M 2009 J. Phys. Chem. C 113 3939
[34] Pan D C, An L J, Sun Z M, Hou W, Yang Y, Yang Z Z and Lu Y F 2008 J. Am. Chem. Soc. 130 5620
[35] Knudson M D, Gupta Y M and Kunz A B 1999 Phys. Rev. B 59 11704
[36] Grünwald M, Zayak A, Neaton J B, Geissler P L and Rabani E 2012 J. Chem. Phys. 136 234111
[37] Xue H G, Shen Z Q and Li C M 2005 Biosens. Bioelectron. 20 2330
[38] Zhou F F, Chen Q M, Chen J, Wang T T, Jia Z, Dou X M and Zhuang S L 2014 Opt. Instrum. 36 342
[39] Madelung O 2004 Semiconductors:data handbook (New York:Springer) p. 289
[40] Deng H X, Li S S, Li J B and Wei S H 2012 Phys. Rev. B 85 195328
[41] Wang B D, Dai J H, Wu X, Song Y and Yang R 2015 Intermetallics 60 58
[42] Siegel D J, Hector L G and Adams J B 2002 Surf. Sci. 498 321
[43] Lu Z S, Li S S, Chen C and Yang Z X 2013 Acta. Phys. Sin. 62 117301 (in Chinese)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!