|
|
Dipole (hyper) polarizabilities of neutral silver clusters |
Francisco E Jorge1,2, Luiz G M de Macedo3 |
1. Departamento de Física, Universidade Federal do Espírito Santo, 29060-900 Vitória, Brazil;
2. Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58429-900 Campina Grande, Brazil;
3. Faculdade de Biotecnologia, ICB, Universidade Federal do Pará, 66075-110 Belém, Brazil |
|
|
Abstract At the Douglas-Kroll-Hess (DKH) level, the B3PW91 functional along with the all-electron relativistic basis sets of valence triple and quadruple zeta qualities are used to determine the structure, stability, and electronic properties of the small silver clusters (Agn, n≤7). The results presented in this study are in good agreement with the experimental data and theoretical values obtained at a higher level of theory from the literature. Static polarizability and hyperpolarizability are also reported. It is verified that the mean dipole polarizability per atom exhibits an odd-even oscillation and that the polarizability anisotropy is directly related to the cluster shape. In this article, the first study of hyperpolarizabilities of small silver clusters is presented. Except for the monomer, the second hyperpolarizabilities of the silver clusters are significantly larger than those of the copper clusters.
|
Received: 06 June 2016
Revised: 16 August 2016
Accepted manuscript online:
|
PACS:
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
31.15.eg
|
(Exchange-correlation functionals (in current density functional theory))
|
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
Fund: Project supported by CNPq, CAPES, and FAPES (Brazilian Agencies). |
Corresponding Authors:
Francisco E Jorge
E-mail: Jorge@cce.ufes.br
|
Cite this article:
Francisco E Jorge, Luiz G M de Macedo Dipole (hyper) polarizabilities of neutral silver clusters 2016 Chin. Phys. B 25 123102
|
[1] |
De Heer W A 1993 Rev. Mod. Phys. 65 611
|
[2] |
Jellinek J 1999 Theory of Atomic and Molecular Clusters (Berlin:Springer)
|
[3] |
Ekardt W 1999 Metal Clusters (Chichester:Wiley)
|
[4] |
Koutecky V B, Pittner J, Boiron M and Fantucci P 1999 J. Chem. Phys. 110 3876
|
[5] |
Koutecky V B, Veyret V and Mitric R 2001 J. Chem. Phys. 115 10450
|
[6] |
Idrobo J C, Öğüt S and Jellinek J 2005 Phys Rev B 72 085445
|
[7] |
Pereiro M and Baldomir D 2007 Phys. Rev. A 75 033202
|
[8] |
Lu Z H and Cao J X 2008 Chin. Phys. B 17 3336
|
[9] |
Li W Y and Chen F Y 2014 Chin. Phys. B 23 117103
|
[10] |
Zhang J F, Zhang M, Zhao Y W, Zhang H Y, Zhao L N and Luo Y H 2015 L Chin. Phys. B 24 067101
|
[11] |
Chang Y, Li W and Jiang Y 2012 Phys. Lett. A 376 2314
|
[12] |
Lv J, Zhang J Y, Liang R R and Wu H S 2016 Chin. Phys. B 25 063103
|
[13] |
Guo P, Zheng J M, Zhao P, Zheng L L and Ren Z Y 2010 Chin. Phys. B 19 083601
|
[14] |
Rabin I, Jackschath C and Schulze W 1991 Z. Phys. D:At. Mol. Clusters 19 153
|
[15] |
Jackschath C, Rabin I and Schulze W 1992 Z. Phys. D:At. Mol. Clusters 22 517
|
[16] |
Spasov V A, Lee T H, Maberry J P and Ervin K M 1999 J. Chem. Phys. 110 5208
|
[17] |
Shi Y, Spasov V A and Ervin K M 1999 J. Chem. Phys. 111 938
|
[18] |
Ho J, Erwin K M and Lineberger W C 1990 J. Chem. Phys. 93 6987
|
[19] |
Alammeddin G, Hunter J, Cameron D and Kappes M M 1992 Chem. Phys. Lett. 192 122
|
[20] |
Handschuh H, Cha C Y, Bechthold P S, Ganteför G and Eberhardt W 1995 J. Chem. Phys. 102 6406
|
[21] |
Khan S A, Senapati D, Senapati T, Bonifassi P, Fan Z, Singh A K, Neeley A, Hill G and Ray P C 2011 Chem. Phys. Lett. 512 92
|
[22] |
Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin:Springer)
|
[23] |
Felix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W and Ertl G 1999 Chem. Phys. Lett. 313 105
|
[24] |
Rabin I, Schulze W, Ertl G, Felix C, Sieber C, Harbich W and Buttet J 2000 Chem. Phys. Lett. 320 59
|
[25] |
Felix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W and Ertl G 2001 Phys. Rev. Lett. 86 2992
|
[26] |
Mostafavi M, Marignier J L, Amblard J and Belloni J 1989 Z. Phys. D:At. Mol. Clusters 12 31
|
[27] |
Tani T 1989 Phys. Today 42 36
|
[28] |
Kim S H, Medeiros-Ribeiro G, Ohlberg D A A, Williams R S and Heath J R 1999 J. Phys. Chem. 103 10341
|
[29] |
Fournier R 2001 J. Chem. Phys. 115 2165
|
[30] |
Pan X D, Gai Z G and Li G P 2008 Chin. Phys. B 17 3329
|
[31] |
De Souza F A L and Jorge F E 2013 J. Braz. Chem. Soc. 24 1357
|
[32] |
Jorge F E, Ferreira I B, Soprani D D and Gomes T 2016 J. Braz. Chem. Soc. 27 127
|
[33] |
Douglas M, Kroll N M 1974 Ann. Phys. 82 89
|
[34] |
Hess B A 1985 Phys. Rev. A:At. Mol. Opt. Phys. 32 756
|
[35] |
Hess B A 1986 Phys. Rev. A:At. Mol. Opt. Phys. 33 3742
|
[36] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[37] |
Perdew J P, Wang W R 1992 Phys. Rev. B:Condens. Matter Mater. Phys. 45 13244
|
[38] |
Campos C T and Jorge F E 2013 Mol. Phys. 111 167
|
[39] |
Ceolin G A, de Berrêdo R C and Jorge F E 2013 Theor. Chem. Acc. 132 1339
|
[40] |
Martins L S C, de Souza F A L, Ceolin G A, Jorge F E, de Berrêdo R C and Campos C T 2013 Compt. Theor. Chem. 1013 62
|
[41] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03, Revision A.1 (Pittsburgh:Gaussian, Inc.)
|
[42] |
De Proft F and Geerlings P 1997 J. Chem. Phys. 106 3270
|
[43] |
Jaque P and Toro-Labbé A 2002 J. Chem. Phys. 117 3208
|
[44] |
Jaque P and Toro-Labbé A 2014 J. Mol. Model. 20 2410
|
[45] |
Simard B, Hackett P A, James A M and Langridge-Smith P R R 1991 Chem. Phys. Lett. 186 415
|
[46] |
Zhao S, Li Z H, Wang W N, Liu Z P, Fan K N, Xie Y and Schaefer Ⅲ H F 2006 J. Chem. Phys. 124 184102
|
[47] |
Wallimann F, Frey H M, Leutwyler S and Riley M 1997 Z. Phys. D:At. Mol. Clusters 40 30
|
[48] |
Yoon J, Kim K S and Baeck K K 2000 J. Chem. Phys. 112 9335
|
[49] |
Ellis A M, Robles E S J and Miller T A 1993 Chem. Phys. Lett. 201 132
|
[50] |
Hilpert K and Gingerich K A 1980 Ber. Bunsenges. Phys. Chem. 84 739
|
[51] |
Moore C E 1958 Natl. Bur. Stand. Circ. 3 467
|
[52] |
Neogrády P, Kellö V, Urban M, Sadlej A J 1997 Int. J. Quantum Chem. 63 557
|
[53] |
Kellö V and Sadlej A J 1996 Theor. Chim. Acta 94 93
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|