Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107106    DOI: 10.1088/1674-1056/25/10/107106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modified model of gate leakage currents in AlGaN/GaN HEMTs

Yuan-Gang Wang(王元刚), Zhi-Hong Feng(冯志红), Yuan-Jie Lv(吕元杰), Xin Tan(谭鑫), Shao-Bo Dun(敦少博), Yu-Long Fang(房玉龙), Shu-Jun Cai(蔡树军)
National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  It has been reported that the gate leakage currents are described by Frenkel-Poole emission (FPE) model, at the temperatures higher than 250 K. However, the gate leakage currents of our passivated devices do not accord with the FPE model. Therefore, a modified FPE model is developed in which an additional leakage current, besides the gate (III), is added. Based on the samples with different passivations, the III caused by a large number of surface traps is separated from total gate currents, and is found to be linear with respect to (φB-Vg)0.5. Compared with these from the FPE model, the calculated results from the modified model agree well with the Ig-Vg measurements at temperatures ranging from 295 K to 475 K.
Keywords:  gate leakage currents      FPE model      additional leakage current      surface traps  
Received:  12 April 2016      Revised:  23 May 2016      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  77.22.Ej (Polarization and depolarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306113).
Corresponding Authors:  Zhi-Hong Feng, Yuan-Jie Lv     E-mail:  ga917vv@163.com;yuanjielv@163.com

Cite this article: 

Yuan-Gang Wang(王元刚), Zhi-Hong Feng(冯志红), Yuan-Jie Lv(吕元杰), Xin Tan(谭鑫), Shao-Bo Dun(敦少博), Yu-Long Fang(房玉龙), Shu-Jun Cai(蔡树军) Modified model of gate leakage currents in AlGaN/GaN HEMTs 2016 Chin. Phys. B 25 107106

[1] Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B 21 017304
[2] Ji D, Liu B, Lu Y W, Zou M and Fan B L 2012 Chin. Phys. B 21 067201
[3] Jouzdani M, Ebrahimi M M, Rawat K, Helaoui M and Ghannouchi F M 2014 IEEE Trans. Cir. Syst. I: Regular Papers 62 571
[4] Resca D, Raffo A, Falco S D, Scappaviva F, Vadalá V and Vannini G 2014 IEEE Microwave and Wireless Components Lett. 24 266
[5] Zhong J, Yao Y, Zheng Y, Yang F, Ni Y Q, He Z Y, Shen Z, Zhou G L, Zhou D Q, Wu Z S, Zhang B J and Liu Y 2015 Chin. Phys. B 24 097307
[6] Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304
[7] Goswami A, Trew R J and Bilbro G L 2014 IEEE Trans. Electron Dev. 61 1014
[8] Rao P K, Park B, Lee S T, Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110 013716
[9] Miller E J, Schaadt D M and Yu E T 2003 Appl. Phys. Lett. 82 1293
[10] Xia L, Hanson A, Boles T and Jin D 2013 Appl. Phys. Lett. 102 113510
[11] Huang K and Han R Q 1985 Solid Physics (Beijing: Higher Education Press) pp. 340-345 (in Chinese)
[12] Chikhaoui W, Bluet J M, Poisson M A, Sarazin N, Dua C and Chevallier C B 2010 Appl. Phys. Lett. 96 072107
[13] Nicollian E H and Goetzberger A 1967 Bell. Syst. Tech. 46 p.1055
[14] Wang X D, Hu W D, Chen X S, and Lu W 2012 IEEE Trans. Electron Dev. 59 1093
[15] Hu W D, Chen X S, Quan Z J, Xia C S and Lu W 2006 Appl. Phys. Lett. 89 243501
[16] Yu C H, Luo X D, Zhou W Z, Luo Q Z and Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)
[17] Kuzmik J, Ostermaier C, Pozzovivo G, Basnar B, Schrenk W, Carlin J F, Gonschorek M, Feltin E, Grandjean N, Douvry Y, Gaquiére C, Jaeger J C D, Čičo K, Froħlich K, Škriniarová J, Kovaáč J, Strasser G, Pogany D and Gornik E 2010 IEEE Trans. Electron Dev. 57 2144
[1] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[5] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[6] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[7] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[8] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[9] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[10] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[11] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[12] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[13] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[14] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[15] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
No Suggested Reading articles found!