Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027103    DOI: 10.1088/1674-1056/27/2/027103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs

Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良)
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  Some realizable structures of double parabolic quantum wells (DPQWs) consisting of AlxGa1-xAs/AlyGa1-y As are constructed to discuss theoretically the optical absorption due to the intersubband transition of electrons for both symmetric and asymmetric cases with three energy levels of conduction bands. The electronic states in these structures are obtained using a finite element difference method. Based on a compact density matrix approach, the optical absorption induced by intersubband transition of electrons at room temperature is discussed. The results reveal that the peak positions and heights of intersubband optical absorption coefficients (IOACs) of DPQWs are sensitive to the barrier thickness, depending on Al component. Furthermore, external electric fields result in the decrease of peak, and play an important role in the blue shifts of absorption spectra due to electrons excited from ground state to the first and second excited states. It is found that the peaks of IOACs are smaller in asymmetric DPQWs than in symmetric ones. The results also indicate that the adjustable extent of incident photon energy for DPQW is larger than for a square one of a similar size. Our results are helpful in experiments and device fabrication.
Keywords:  double parabolic quantum well      electronic intersubband optical absorption      three energy levels  
Received:  11 August 2017      Revised:  30 September 2017      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Fg (Quantum wells)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274098).
Corresponding Authors:  Shi-Liang Ban     E-mail:  slban@imu.edu.cn
About author:  71.55.Eq; 73.20.At; 73.21.Fg; 78.20.Ci

Cite this article: 

Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良) Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs 2018 Chin. Phys. B 27 027103

[1] Tien N T, Hung N N T, Nguyen T T and Thao P T B 2017 Physica B 519 63
[2] Zheng W M, Li S M, Cong W Y, Wang A F, Li B and Huang H B 2016 Chin. Phys. B 25 047302
[3] Restrepo R L, Ungan F, Kasapoglu E, Mora-Ramos M E, Morales A L and Duque C A 2015 Physica B 457 165
[4] Liu D F, Cheng Y and He J F 2015 Superlatt. Microstruct. 86 313
[5] Kuo D M T, Fang A and Chang Y C 2001 Inf. Phys. Technol. 42 433
[6] Someya T, Hoshino K, Harris J C, Tachibana K and Arakawa Y 2000 Appl. Phys. Lett. 77 1336
[7] Campman K L, Maranowski K D, Schmidt H, Imamoglu A and Gossard A C 1999 Physica E 5 16
[8] Kotani T, Arita M, Hoshino K and Arakawa Y 2016 Appl. Phys. Lett. 108 052102
[9] Alves F D P, Karunasiri G, Hanson N, Byloos M, Liu H C, Bezinger A, Buchanan M 2007 Inf. Phys. Technol. 50 182
[10] Li J, Kolokolov K, Ning C Z, Larraber D C, Khodaparast G A, Kono J, Ueda K, Nakajima Y, Sasa S and Inoue M 2003 Mater. Res. Soc. 744 M9.2.1
[11] Manasreh M O, Szmulowicz F, Fischer D W, Evans K R and Stutz C E 1990 Appl. Phys. Lett. 57 1790
[12] Liu D F, Wang E X and Guo K X 2017 Physica E 86 64
[13] Ozturk E 2017 Optik 139 256
[14] Zhu J, Ha S H and Ban S L 2013 Superlatt. Microstruct. 56 92
[15] Aziz Aghchegala V L, Mughnetsyan V N and Kirakosyan A A 2011 Superlatt. Microstruct. 49 1
[16] Gu Z, Zhu Z N, Wang M M, Wang Y Q, Wang M S, Qu Y and Ban S L 2017 Superlatt. Microstruct. 102 391
[17] Phuc H V and Tung L V 2014 Superlatt. Microstruct. 71 124
[18] Yu X Q and Yu Y B 2013 Superlatt. Microstruct. 62 225
[19] Li Q, Qu Y and Ban S L 2017 Acta. Phys. Sin. 66 077301(in Chinese)
[20] B A Ebrahimipour, Askari H R and Ramezani A B 2016 Superlatt. Microstruct. 97 495
[21] Al E B, Ungan F, Yesilgul U, Kasapoglu E, Sari H and Sökmen I 2015 Opt. Mater. 47 1
[22] Solaimani M, Morteza I and Arabshahi H 2013 J. Lumin. 134 699
[23] Karimi M J and Keshavarz A 2011 Superlatt. Microstruct. 50 572
[24] Miranda G L, Mora-Ramos M E and Duque C A 2011 Physica B 50 350
[25] Eseanu N 2010 Phys. Lett. A 374 1278
[26] Chen B, Guo K X, Wang R Z, Zheng Y B and Li B 2008 Eur. Phys. J. B 66 227
[27] Keshavarz A and Karimi M J 2010 Phys. Lett. A 374 2675
[28] Sari H, Kasapoglu E, Sakiroglu S, Yesilgul U, Ungand F and Sökmen I 2017 Physica E 90 214
[29] Safarpour G, Zamani A, Izadi M A and Ganjipour H 2014 J. Lumin. 147 295
[30] Mora-Ramos M E, Duque C A, Kasapoglu E, Sari H and Sökmen I 2013 J. Lumin. 135 301
[1] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[5] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[6] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[7] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[8] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[9] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[10] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[11] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[12] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[13] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[14] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[15] Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors
Peng Cui(崔鹏), Zhao-Jun Lin(林兆军), Chen Fu(付晨), Yan Liu(刘艳), Yuan-Jie Lv(吕元杰). Chin. Phys. B, 2017, 26(12): 127102.
No Suggested Reading articles found!