CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics |
Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚) |
Department of Physics, Tsinghai University, Beijing 100084, China |
|
|
Abstract The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni3Al, which gives rise to a cubic interstitial phase. In addition, the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni3Al. The calculation results for the G/B and Poisson's ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni3Al while carbon hardly has an effect on its brittleness or ductility.
|
Received: 08 April 2016
Revised: 06 July 2016
Accepted manuscript online:
|
PACS:
|
71.20.Lp
|
(Intermetallic compounds)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
62.20.D-
|
(Elasticity)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402). |
Corresponding Authors:
Chong-Yu Wang
E-mail: cywang@mail.tsinghua.edu.cn
|
Cite this article:
Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚) First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics 2016 Chin. Phys. B 25 107104
|
[1] |
Reed R 2006 The Superalloys: Fundamentals and Applications (New York: Cambridge University Press)
|
[2] |
Pollock T M and Tin S 2006 J. Propul. Power 22 361
|
[3] |
Bhadeshia H K D H www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html
|
|
[2016]
|
[4] |
Wu Y X, Li X Y and Wang Y M 2007 Acta Mater. 55 4845
|
[5] |
Kayser F X and Stassis C 1981 Phys. Status Solidi A 64 335
|
[6] |
Prikhodko S V, Yang H, Ardell A J, Carnes J D and Isaak D G 1999 Metall. Mater. Trans. A 30 2403
|
[7] |
Kim D E, Shang S L and Liu Z K 2010 Intermetallics 18 1163
|
[8] |
Mehl M J, Klein B M and Papaconstantopoulos D A 1994 First principles calculations of elastic properties of metals (London: Wiley) Vol. 1, pp.195-209
|
[9] |
Kim D E, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
|
[10] |
Wang Y J and Wang C Y 2009 MRS Proceedings, November 30-December 4, 2009, Boston, USA, Vol. 1224
|
[11] |
Wu X X and Wang C Y 2015 J. Phys.: Condens. Matter 27 295401
|
[12] |
Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
|
[13] |
Osburn J E, Mehl M J and Klein B M 1991 Phys. Rev. B 43 1805
|
[14] |
Iotova D, Kioussis N and Lim S P 1996 Phys. Rev. B 54 14413
|
[15] |
Wang Y J and Wang C Y 2009 Chin. Phys. B 18 4339
|
[16] |
Wang Y J and Wang C Y 2008 Mater. Sci. Eng. A 490 242
|
[17] |
Wang Y J and Wang C Y 2009 Philos. Mag. 89 2935
|
[18] |
Wang Y J and Wang C Y 2009 Scr. Mater. 61 197
|
[19] |
Aoki K and Izumi O 1979 J. Jpn. Inst. Met. 43 1190
|
[20] |
Liu C T, White C L and Horton J A 1985 Acta Metall. 33 213
|
[21] |
Taub A I, Huang S C and Chang K M 1984 Metall. Mater. Trans. A 15 399
|
[22] |
White C L and Choudhury A 1987 MRS Symposium Proceedings, December 1-6, 1986, Boston, USA, p. 427
|
[23] |
Schulson E M, Weihs T P, Baker I, Frost H J and Horton J A 1986 Acta Metall. 34 1395
|
[24] |
Baker I, Schulson E M and Michael J R 1988 Philos. Mag. B 57 379
|
[25] |
George E P, Liu C T and Pope D P 1993 Scr. Metall. Mater. 28 857
|
[26] |
Huang S C, Taub A I and Chang K M 1984 Acta Metall. 32 1703
|
[27] |
Mott N F and Nabarro F R N 1948 Report on the Conference on the Strength of Solids, 1947, London, UK, p. 1
|
[28] |
Heredia F E and Pope D P 1988 MRS Proceedings, November 28-December 3, 1988, Boston, USA, Vol.133, p. 287
|
[29] |
Heredia F E and Pope D P 1991 Acta Metall. Mater. 39 2017
|
[30] |
Sun S N, Kioussis N and Ciftan M 1996 Phys. Rev. B 54 3074
|
[31] |
Huang S C, Briant C L, Chang K M, Taub A I and Hall E L 1986 J. Mater. Res. 1 60
|
[32] |
Tong P, Zhu X B, Zhao B C, Ang R, Song W H and Sun Y P 2006 Physica B 371 63
|
[33] |
Janas A and Olejnik E 2011 Arch. Foundry Eng. 11 65
|
[34] |
Caplan D, Hussey R J, Sproule G I and Graham M J 1980 Oxid. Met. 14 279
|
[35] |
Šob M, Friák M, Legut D, Fiala J and Vitek V 2004 Mater. Sci. Eng. A 387 148
|
[36] |
Ogata S, Umeno Y and Kohyama M 2009 Modell. Simul. Mater. Sci. Eng. 17 013001
|
[37] |
Yao Q, Xing H and Sun J 2006 Appl. Phys. Lett. 89 1906
|
[38] |
Sanyal S, Waghmare U V, Subramanian P R and Gigliotti M F 2010 Scripta Mater. 63 391
|
[39] |
Chen K, Zhao L R and John S T 2004 Mater. Sci. Eng. A 365 80
|
[40] |
Chen K, Zhao L R and John S T 2003 Mater. Sci. Eng. A 360 197
|
[41] |
Peng P, Zhou D W, Liu J S, Yang R and Hu Z Q 2006 Mater. Sci. Eng. A 416 169
|
[42] |
Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
|
[43] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[44] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[45] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[46] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[47] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[48] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[49] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[50] |
Zoroddu A, Bernardini F, Ruggerone P and Fiorentini V 2001 Phys. Rev. B 64 045208
|
[51] |
Erhart P, Albe K and Klein A 2006 Phys. Rev. B 73 205203
|
[52] |
Ravi C and Wolverton C 2004 Acta Mater. 52 4213
|
[53] |
Wolverton C 2001 Acta Mater. 49 3129
|
[54] |
Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
|
[55] |
Yin M T and Cohen M L 1982 Phys. Rev. B 26 5668
|
[56] |
Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
|
[57] |
Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner)
|
[58] |
Hill R 1952 Proc. Phys. Soc. London 65 349
|
[59] |
Reuss A 1929 Z. Angew. Math. Mech. 9 49
|
[60] |
Fahrmann M, Hermann W, Fahrmann E, Boegli A, Pollock T M and Sockel H G 1999 Mater. Sci. Eng. A 260 212
|
[61] |
Wang Y, Curtarolo S, Jiang C, Arroyave R, Wang T, Ceder G, Chen L Q and Liu Z K 2004 Calphad 28 79
|
[62] |
Kittel C 2005 Introduction to Sold State Physics (New York: John Wiley & Sons)
|
[63] |
Yoo M H 1987 Acta Metall. 35 1559
|
[64] |
Sun S N, Kioussis N, Lim S P, Gonis A and Gourdin W H 1995 Phys. Rev. B 52 14421
|
[65] |
Wang F H, Wang C Y and Yang J L 1996 J. Phys.: Condens. Matter 8 5527
|
[66] |
Hu Q M, Yang R, Xu D S, Hao Y L, Li D and Wu W T 2003 Phys. Rev. B 67 224203
|
[67] |
Epstein S G and Carlson O N 1965 Acta Metall. 13 487
|
[68] |
Du J, Wen B, Melnik R and Kawazoe Y 2014 Intermetallics 54 110
|
[69] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
|
[70] |
Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
|
[71] |
Pugh S F 1954 Phil. Mag. 45 823
|
[72] |
Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|