Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 104301    DOI: 10.1088/1674-1056/25/10/104301
Special Issue: Virtual Special Topic — Acoustics
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An acoustic Maxwell's fish-eye lens based on gradient-index metamaterials

Bao-guo Yuan(袁保国)1,2, Ye Tian(田野)1, Ying Cheng(程营)1,3, Xiao-jun Liu(刘晓峻)1,3
1 Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China;
2 Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
3 State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have proposed a two-dimensional acoustic Maxwell's fish-eye lens by using the gradient-index metamaterials with space-coiling units. By adjusting the structural parameters of the units, the refractive index can be gradually varied, which is key role to design the acoustic fish-eye lens. As predicted by ray trajectories on a virtual sphere, the proposed lens has the capability to focus the acoustic wave irradiated from a point source at the surface of the lens on the diametrically opposite side of the lens. The broadband and low loss performance is further demonstrated for the lens. The proposed acoustic fish-eye lens is expected to have the potential applications in directional acoustic coupler or coherent ultrasonic imaging.
Keywords:  gradient index      Maxwell'      s fish-eye      acoustic lens      broadband  
Received:  18 February 2016      Revised:  27 June 2016      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.20.Dk (Ray acoustics)  
  43.20.Bi (Mathematical theory of wave propagation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11574148, 11474162, 1274171, 11674172, and 11674175), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).
Corresponding Authors:  Ying Cheng, Xiao-jun Liu     E-mail:  chengying@nju.edu.cn;liuxiaojun@nju.edu.cn

Cite this article: 

Bao-guo Yuan(袁保国), Ye Tian(田野), Ying Cheng(程营), Xiao-jun Liu(刘晓峻) An acoustic Maxwell's fish-eye lens based on gradient-index metamaterials 2016 Chin. Phys. B 25 104301

[1] Climente A, Torrent D and Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103
[2] Lin S C S, Huang T J, Sun J H and Wu T T 2009 Phys. Rev. B 79 094302
[3] Martin T P, Layman C N, Moore K M and Orris G J 2012 Phys. Rev. B 85 161103
[4] Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z and Liu Z Y 2010 Appl. Phys. Lett. 96 263502
[5] Zigoneanu L, Popa B I and Cummer S A 2014 Nat. Mater. 13 352
[6] Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301
[7] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[8] Zhang S, Yin L L and Fang N 2009 Phys. Rev. Lett. 102 194301
[9] Liu A P, Zhou X M, Huang G L and Hu G K 2012 J. Acoust. Soc. Am. 132 2800
[10] Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X and Garcia-Vidal F J 2011 Nat. Phys. 7 52
[11] Li J S, Fok L, Yin X B, Bartal G and Zhang X 2009 Nat. Mater. 8 931
[12] Gu Y, Cheng Y and Liu X J 2015 Appl. Phys. Lett. 107 133503
[13] Li D, Zigoneanu L, Popa B I and Cummer S A 2012 J. Acoust. Soc. Am. 132 2823
[14] Zigoneanu L, Popa B I and Cummer S A 2011 Phys. Rev. B 84 024305
[15] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553
[16] Chang T M, Dupont G, Enoch S and Guenneau S 2012 New J. Phys. 14 035011
[17] Zhang Z, Li R Q, Liang B, Zou X Y and Cheng J C 2015 Chin. Phys. B 24 024301
[18] Li Y, Liang B, Tao X, Zhu X F, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 233508
[19] Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T and Liu Z Y 2014 Sci. Rep. 4 6517
[20] Torrent D and Sánchez-Dehesa J 2007 New J. Phys. 9 323
[21] Yuan B G, Cheng Y and Liu X J 2015 Appl. Phys. Express 8 027301
[22] Maxwell J C 1854 Camb. Dublin Math J. 8 188
[23] Tai C T 1958 Nature 182 1600
[24] Liu J B, Mendis R and Mittleman D M 2013 Appl. Phys. Lett. 103 031104
[25] Climente A, Torrent D and Sánchez-Dehesa J 2014 Appl. Phys. Lett. 105 064101
[26] Lefebvre G, Dubois M, Beauvais R, Achaoui Y, Ing R K, Guenneau S and Sebbah P 2015 Appl. Phys. Lett. 106 024101
[27] Liang Z X and Li J S 2012 Phys. Rev. Lett. 108 114301
[28] Li Y, Yu G K, Liang B, Zou X Y, Li G Y, Cheng S and Cheng J C 2014 Sci. Rep. 4 6830
[29] Fokin V, Ambati M, Sun C and Zhang X 2007 Phys. Rev. B 76 144302
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[5] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[6] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[7] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[8] Broadband topological valley-projected edge-states transport in composite structure phononic crystal
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2021, 30(8): 084302.
[9] A radar-infrared compatible broadband absorbing surface: Design and analysis
Qing-Tao Yu(余庆陶), Yuan-Song Zeng(曾元松), and Guo-Jia Ma(马国佳). Chin. Phys. B, 2021, 30(7): 078402.
[10] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
[11] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[12] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[13] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[14] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[15] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
No Suggested Reading articles found!