CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement |
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军) |
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China |
|
|
Abstract We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.
|
Received: 13 June 2019
Revised: 14 July 2019
Accepted manuscript online:
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.25.-p
|
(Wave optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704416) and the Hunan Provincial Natural Science Foundation, China (Grant No. 2017JJ3408). |
Corresponding Authors:
Zhong-Jian Yang
E-mail: zjyang@csu.edu.cn
|
Cite this article:
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军) Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement 2019 Chin. Phys. B 28 107802
|
[45] |
Bao Y, Hou Y and Wang Z 2015 Plasmonics 10 251
|
[1] |
Novotny L and van Hulst N 2011 Nat. Photon. 5 83
|
[46] |
Deng Y H, Yang Z J and He J 2018 Opt. Express 26 31116
|
[2] |
Agio M 2012 Nanoscale 4 692
|
[47] |
Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
|
[3] |
Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
|
[48] |
Yong Z, Zhang S, Dong Y and He S 2015 Prog. Electromagn. Res. 153 123
|
[4] |
Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290 (in Chinese)
|
[49] |
Yang Z J 2015 J. Phys. Chem. C 119 26079
|
[5] |
Xu H, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
|
[50] |
Palik E D 1985 Handbook Of Optical Constants of Solids (New York: Academic Press) pp. 286-295
|
[6] |
Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
|
[51] |
Yang Z J, Antosiewicz T J, Verre R, García de Abajo F J, Apell S P and Käll M 2015 Nano Lett. 15 7633
|
[7] |
Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W E 2009 Nat. Photon. 3 654
|
[52] |
Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
|
[8] |
Shen H, Chou R Y, Hui Y Y, He Y, Cheng Y, Chang H C, Tong L, Gong Q and Lu G 2016 Laser & Photon. Rev. 10 647
|
[9] |
Zhang T, Xu J, Deng Z L, Hu D, Qin F and Li X 2019 Nanomaterials 9 629
|
[10] |
Deng Z L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J and Wang G P 2018 Nano Lett. 18 2885
|
[11] |
Deng Z L, Deng J, Zhuang X, Wang S, Shi T, Wang G P, Wang Y, Xu J, Cao Y, Wang X, Cheng X, Li G and Li X 2018 Light Sci. Appl. 7 78
|
[12] |
Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
|
[13] |
Thyagarajan K, Rivier S, Lovera A and Martin O J F 2012 Opt. Express 20 12860
|
[14] |
Aouani H, Rahmani M, Navarrocía M and Maier S A 2014 Nat. Nanotechnol. 9 290
|
[15] |
Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
|
[16] |
Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957
|
[17] |
Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
|
[18] |
Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M and Bokor J 2011 Nano Lett. 11 2606
|
[19] |
Cen C L, Yi Z, Zhang G F, Zhang Y B, Liang C P, Chen X F, Tang Y J, Ye X, Yi Y G, Wang J Q and Hua J J 2019 Results Phys. 14 102463
|
[20] |
Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
|
[21] |
Chen H, Shao L, Li Q and Wang J 2013 Chem. Soc. Rev. 42 2679
|
[22] |
Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 7950
|
[23] |
Bryant G W, Abajo F J G d and Aizpurua J 2008 Nano Lett. 8 631
|
[24] |
Wen J, Wang H, Chen H, Deng S and Xu N 2018 Chin. Phys. B 27 096101
|
[25] |
Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
|
[26] |
Muskens O L, Giannini V, Sánchezgil J A and Gómez R J 2007 Opt. Express 15 17736
|
[27] |
Fischer H and Martin O J 2008 Opt. Express 16 9144
|
[28] |
Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F and Quidant R 2008 Phys. Rev. Lett. 101 116805
|
[29] |
Yang Z J, Zhao Q, Xiao S and He J 2017 Photon. Nanostruct. 25 72
|
[30] |
Schuck P J, Zhang Z, Weber-Bargioni A and Wu S W 2009 Nano Lett. 9 4505
|
[31] |
Yang Z J, Antosiewicz T J and Shegai T 2016 Opt. Express 24 20373
|
[32] |
Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B 28 044201
|
[33] |
Puchkova A, Vietz C, Pibiri E, B W, Sanz P M, Acuna G P and Tinnefeld P 2015 Nano Lett. 15 8354
|
[34] |
Li P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Gen S, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401
|
[35] |
Xu H Q, Li H J and Gang X 2013 Chin. Opt. Lett. 11 042401
|
[36] |
Biagioni P, Huang J S, Duó L, Finazzi M and Hecht B 2009 Phys. Rev. Lett. 102 256801
|
[37] |
Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y and Gu G 2015 Sens. Actuators B Chem. 215 480
|
[38] |
Lourençomartins H, Das P, Tizei L H G, Weil R and Kociak M 2018 Nat. Phys. 14 360
|
[39] |
Feichtner T, Selig O, Kiunke M and Hecht B 2012 Phys. Rev. Lett. 109 127701
|
[40] |
Xu H, Li H, Xiao G and Chen Q 2016 Opt. Commun. 377 70
|
[41] |
Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D and Yu Y 2017 Opt. Express 25 3675
|
[42] |
Fernándezgarcía R, Sonnefraud Y, Fernándezdomínguez A I, Giannini V and Maier S A 2014 Contem. Phys. 55 1
|
[43] |
Li W and Hou Y 2017 Opt. Express 25 7358
|
[44] |
Zhou F, Liu Y and Cai W 2014 Opt. Lett. 39 1302
|
[45] |
Bao Y, Hou Y and Wang Z 2015 Plasmonics 10 251
|
[46] |
Deng Y H, Yang Z J and He J 2018 Opt. Express 26 31116
|
[47] |
Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
|
[48] |
Yong Z, Zhang S, Dong Y and He S 2015 Prog. Electromagn. Res. 153 123
|
[49] |
Yang Z J 2015 J. Phys. Chem. C 119 26079
|
[50] |
Palik E D 1985 Handbook Of Optical Constants of Solids (New York: Academic Press) pp. 286-295
|
[51] |
Yang Z J, Antosiewicz T J, Verre R, García de Abajo F J, Apell S P and Käll M 2015 Nano Lett. 15 7633
|
[52] |
Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|