Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107802    DOI: 10.1088/1674-1056/ab3f99
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement

Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军)
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.

Keywords:  surface plasmon      optical antenna      electric field enhancement      broadband      cascaded  
Received:  13 June 2019      Revised:  14 July 2019      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.-p (Wave optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11704416) and the Hunan Provincial Natural Science Foundation, China (Grant No. 2017JJ3408).

Corresponding Authors:  Zhong-Jian Yang     E-mail:  zjyang@csu.edu.cn

Cite this article: 

Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军) Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement 2019 Chin. Phys. B 28 107802

[45] Bao Y, Hou Y and Wang Z 2015 Plasmonics 10 251
[1] Novotny L and van Hulst N 2011 Nat. Photon. 5 83
[46] Deng Y H, Yang Z J and He J 2018 Opt. Express 26 31116
[2] Agio M 2012 Nanoscale 4 692
[47] Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
[3] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[48] Yong Z, Zhang S, Dong Y and He S 2015 Prog. Electromagn. Res. 153 123
[4] Shao L, Ruan Q F, Wang J F and Lin H Q 2014 Physics 43 290 (in Chinese)
[49] Yang Z J 2015 J. Phys. Chem. C 119 26079
[5] Xu H, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[50] Palik E D 1985 Handbook Of Optical Constants of Solids (New York: Academic Press) pp. 286-295
[6] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[51] Yang Z J, Antosiewicz T J, Verre R, García de Abajo F J, Apell S P and Käll M 2015 Nano Lett. 15 7633
[7] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W E 2009 Nat. Photon. 3 654
[52] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[8] Shen H, Chou R Y, Hui Y Y, He Y, Cheng Y, Chang H C, Tong L, Gong Q and Lu G 2016 Laser & Photon. Rev. 10 647
[9] Zhang T, Xu J, Deng Z L, Hu D, Qin F and Li X 2019 Nanomaterials 9 629
[10] Deng Z L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J and Wang G P 2018 Nano Lett. 18 2885
[11] Deng Z L, Deng J, Zhuang X, Wang S, Shi T, Wang G P, Wang Y, Xu J, Cao Y, Wang X, Cheng X, Li G and Li X 2018 Light Sci. Appl. 7 78
[12] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[13] Thyagarajan K, Rivier S, Lovera A and Martin O J F 2012 Opt. Express 20 12860
[14] Aouani H, Rahmani M, Navarrocía M and Maier S A 2014 Nat. Nanotechnol. 9 290
[15] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[16] Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957
[17] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[18] Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M and Bokor J 2011 Nano Lett. 11 2606
[19] Cen C L, Yi Z, Zhang G F, Zhang Y B, Liang C P, Chen X F, Tang Y J, Ye X, Yi Y G, Wang J Q and Hua J J 2019 Results Phys. 14 102463
[20] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[21] Chen H, Shao L, Li Q and Wang J 2013 Chem. Soc. Rev. 42 2679
[22] Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 7950
[23] Bryant G W, Abajo F J G d and Aizpurua J 2008 Nano Lett. 8 631
[24] Wen J, Wang H, Chen H, Deng S and Xu N 2018 Chin. Phys. B 27 096101
[25] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
[26] Muskens O L, Giannini V, Sánchezgil J A and Gómez R J 2007 Opt. Express 15 17736
[27] Fischer H and Martin O J 2008 Opt. Express 16 9144
[28] Ghenuche P, Cherukulappurath S, Taminiau T H, van Hulst N F and Quidant R 2008 Phys. Rev. Lett. 101 116805
[29] Yang Z J, Zhao Q, Xiao S and He J 2017 Photon. Nanostruct. 25 72
[30] Schuck P J, Zhang Z, Weber-Bargioni A and Wu S W 2009 Nano Lett. 9 4505
[31] Yang Z J, Antosiewicz T J and Shegai T 2016 Opt. Express 24 20373
[32] Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B 28 044201
[33] Puchkova A, Vietz C, Pibiri E, B W, Sanz P M, Acuna G P and Tinnefeld P 2015 Nano Lett. 15 8354
[34] Li P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Gen S, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401
[35] Xu H Q, Li H J and Gang X 2013 Chin. Opt. Lett. 11 042401
[36] Biagioni P, Huang J S, Duó L, Finazzi M and Hecht B 2009 Phys. Rev. Lett. 102 256801
[37] Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y and Gu G 2015 Sens. Actuators B Chem. 215 480
[38] Lourençomartins H, Das P, Tizei L H G, Weil R and Kociak M 2018 Nat. Phys. 14 360
[39] Feichtner T, Selig O, Kiunke M and Hecht B 2012 Phys. Rev. Lett. 109 127701
[40] Xu H, Li H, Xiao G and Chen Q 2016 Opt. Commun. 377 70
[41] Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D and Yu Y 2017 Opt. Express 25 3675
[42] Fernándezgarcía R, Sonnefraud Y, Fernándezdomínguez A I, Giannini V and Maier S A 2014 Contem. Phys. 55 1
[43] Li W and Hou Y 2017 Opt. Express 25 7358
[44] Zhou F, Liu Y and Cai W 2014 Opt. Lett. 39 1302
[45] Bao Y, Hou Y and Wang Z 2015 Plasmonics 10 251
[46] Deng Y H, Yang Z J and He J 2018 Opt. Express 26 31116
[47] Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
[48] Yong Z, Zhang S, Dong Y and He S 2015 Prog. Electromagn. Res. 153 123
[49] Yang Z J 2015 J. Phys. Chem. C 119 26079
[50] Palik E D 1985 Handbook Of Optical Constants of Solids (New York: Academic Press) pp. 286-295
[51] Yang Z J, Antosiewicz T J, Verre R, García de Abajo F J, Apell S P and Käll M 2015 Nano Lett. 15 7633
[52] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[10] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[13] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[14] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[15] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
No Suggested Reading articles found!