ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Flexible broadband polarization converter based on metasurface at microwave band |
Qi Wang(王奇)1, Xiangkun Kong(孔祥鲲)1, Xiangxi Yan(严祥熙)1, Yan Xu(徐岩)1, Shaobin Liu(刘少斌)1, Jinjun Mo(莫锦军)2, Xiaochun Liu(刘晓春)3 |
1 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
3 Research Institute for Special Structures of Aeronautical Composite Aviation Industry Corporation of China, Aeronautical Science Key Laboratory for High Performance Electromagnetic Windows, Jinan 250000, China |
|
|
Abstract A flexible broadband linear polarization converter is proposed based on the metasurface operating at microwave band. To achieve bandwidth extension property, long and short metallic arc wires, as well as the metallic disks placed over a ground plane, are combined into the polarizer, which can generate three neighboring resonances. Due to the combination of the first two resonances and the optimized size and thickness of the unit cell, the polarization converter can have a weak incident angle dependence. Both simulated and measured results confirm that the average polarization conversion ratio is over 85% from 11.3 GHz to 20.2 GHz within a broad range of incident angle from 0° to 45°. Moreover, the proposed polarization converter based on flexible substrates can be applied for conformal design. The simulation and experiment results demonstrate that our designed polarizer still keeps high polarization conversion efficiency, even when it adheres to convex cylindrical surfaces. The periodic metallic structure of the designed polarizer has great potential application values in the microwave, terahertz, and optic regimes.
|
Received: 04 March 2019
Revised: 06 April 2019
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
92.60.Ta
|
(Electromagnetic wave propagation)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. kfjj20180401), the National Natural Science Foundation of China (Grant No. 61471368), the Aeronautical Science Foundation of China (Grant No. 20161852016), the China Postdoctoral Science Foundation (Grant No. 2016M601802), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1601009B). |
Corresponding Authors:
Xiangkun Kong
E-mail: xkkong@nuaa.edu.cn
|
Cite this article:
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春) Flexible broadband polarization converter based on metasurface at microwave band 2019 Chin. Phys. B 28 074205
|
[1] |
Dietlein C, Luukanen A, Popović Z and Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804
|
[34] |
Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
|
[2] |
Chattopadhyay T, Bhowmik P and Roy J N 2012 J. Opt. Soc. Am. B 29 2852
|
[35] |
Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
|
[3] |
Shelby R A, Smith D R and Schultz S 2001 Science 292 77
|
[36] |
Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
|
[4] |
Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489
|
[37] |
Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
|
[5] |
Huang X J, Yang D and Yang H L 2014 J. Appl. Phys. 115 103505
|
[38] |
Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
|
[6] |
Ma H F, Wang G Z, Kong G S and Cui T J 2014 Opt. Mater. Express 4 1717
|
[39] |
Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
|
[7] |
Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J. Electromagn. Waves Appl. 27 1850
|
[40] |
Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
|
[8] |
Kundtz N and Smith D R 2010 Nat. Mater. 9 129
|
[41] |
Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
|
[9] |
Yu N F and Capasso F 2014 Nat. Mater. 13 139
|
[42] |
Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
|
[10] |
Liu K, Liu Y, Jia Y T and Guo Y J 2017 IEEE Trans. Antennas Propag. 65 4288
|
[43] |
Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
|
[11] |
Jia Y T, Liu Y, Gong S X, Zhang W B and Liao G S 2017 IEEE Antennas Wireless Propag. Lett. 16 2477
|
[44] |
Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
|
[12] |
Ni X J, Wong Z J, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
|
[45] |
Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
|
[13] |
Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
|
[46] |
Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
|
[14] |
Meissner T and Wentz F J 2006 IEEE Trans. Geosci. Remote Sens. 44 506
|
[15] |
Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
|
[16] |
Ma X L, Huang C, Pu M B, Hu C G, Feng Q and Luo X G 2012 Opt. Express 20 16050
|
[17] |
Winkler S A, Hong W, Bozzi M and Wu K 2010 IEEE Trans. Antennas Propag. 58 1202
|
[18] |
Cheng Y Z, Nie Y, Cheng Z Z and Gong R Z 2014 Prog. Electromagn. Res. 145 263
|
[19] |
Song K, Liu Y H, Luo C R and Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104
|
[20] |
Wu L, Yang Z Y, Cheng Y Z, Gong R Z, Zhao M, Zheng Y, Duan J A and Yuan X H 2014 Appl. Phys. A 116 643
|
[21] |
Wei Z Y, Cao Y, Fan Y C, Yu X and Li H Q 2011 Appl. Phys. Lett. 99 221907
|
[22] |
Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z and Zhang A X 2015 J. Appl. Phys. 117 044501
|
[23] |
Jia Y T, Liu Y, Zhang W B and Gong S X 2016 Appl. Phys. Lett. 109 051901
|
[24] |
Yogesh N, Fu T, Lan F and Ouyang Z B 2015 IEEE Photon. J. 7 1
|
[25] |
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S and Wegener M 2009 Science 325 1513
|
[26] |
Feng M D, Wang J F, Ma H, Mo W D, Ye H J and Qu S B 2013 J. Appl. Phys. 114 074508
|
[27] |
Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B and Li Y F 2014 J. Appl. Phys. 115 154504
|
[28] |
Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
|
[29] |
Dong G X, Shi H Y, Xia S, Zhang A X, Xu Z and Wei X Y 2016 Opt. Commun. 365 108
|
[30] |
Jiang Y N, Wang L, Wang J, Akwuruoha C N and Cao W P 2017 Opt. Express 25 27616
|
[31] |
Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
|
[32] |
Mei Z L, Ma X M, Lu C and Zhao Y D 2017 AIP Adv. 7 125323
|
[33] |
Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
|
[34] |
Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
|
[35] |
Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z and Wei X Y 2016 Chin. Phys. B 25 084202
|
[36] |
Kim H K, Ling K Y, Kim K and Lim S 2015 Opt. Express 23 5898
|
[37] |
Wang L L, Liu S B, Zhang H F, Kong X K and Liu L L 2017 J. Electromagn. Waves Appl. 31 1216
|
[38] |
Sharma S K, Ghosh S, Srivastava K V and Shukla A 2017 Microwave Opt. Technol. Lett. 59 348
|
[39] |
Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
|
[40] |
Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano 5 4641
|
[41] |
Jang Y, Yoo M and Lim S 2013 Opt. Express 21 24163
|
[42] |
Xu H X, Tang S W, Sun C, Li L L, Liu H W, Yang X M, Yuan F and Sun Y M 2018 Photon. Res. 6 782
|
[43] |
Wu K D, Coquet P, Wang Q J and Genevet P 2018 Nat. Commun. 9 3494
|
[44] |
Zhu H, Liang X L, Ye S, Jin R H and Geng J P 2016 IEEE Antennas Wireless Propag. Lett. 15 1653
|
[45] |
Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Photon. 1 279
|
[46] |
Diem M, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 033101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|