Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014201    DOI: 10.1088/1674-1056/abb662
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial

Tao Fu(傅涛)1,†, Xing-Xing Liu(刘兴兴)1, Guo-Hua Wen(文国华)2, Tang-You Sun(孙堂友)1, Gong-Li Xiao(肖功利)1, and Hai-Ou Li(李海鸥)1
1 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (GUET), Guilin 541004, China; 2 Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
Abstract  We proposed a sandwich structure to realize broadband asymmetric transmission (AT) for both linearly and circularly polarized waves in the near infrared spectral region. The structure composes of a silica substrate and two sand-clock-like gold layers on the opposite sides of the substrate. Due to the surface plasmons of gold, the structure shows that the AT parameters of linearly and circularly polarized waves can reach 0.436 and 0.403, respectively. Meanwhile, a broadband property is presented for the AT parameter is over 0.3 between 320 THz and 340 THz. The structure realizes a diode-like AT for linearly wave in forward and circularly wave in backward, respectively. The magnetic dipoles excited by current in the two gold layers contribute to the broadband AT. The current density in top and bottom metallic layers illustrates the mechanism of the polarization conversion for broadband AT in detail.
Keywords:  asymmetric transmission      metasurface      polarization conversion      trerahertz      broadband      electromagnetic wave      near-infrared  
Received:  08 June 2020      Revised:  02 August 2020      Accepted manuscript online:  09 September 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965009, 61874036, 61805053, and 61764001), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2018JJA170010 and 2018GXNSFAA281193), and the Innovation Project of GUET Graduate Education (Grant No. 2020YCXS019).
Corresponding Authors:  Corresponding author. E-mail: ft85@guet.edu.cn   

Cite this article: 

Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥) Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial 2021 Chin. Phys. B 30 014201

1 Patrice G and Federico C 2015 Rep. Prog. Phys. 78 024401
2 Deng Z L, Zhang S and Wang G P 2016 Nanoscale 8 1588
3 Chen H T, Taylor A J and Yu N F 2016 Rep. Prog. Phys. 79 076401
4 Deng Z L, Cao Y, Li X and Wang G P 2018 Photon Res. 6 443
5 Yu N F and Capasso F 2014 Nat. Mater. 13 139
6 Deng Z L and Li G X 2017 Mater. Today Phys. 3 16
7 Wang Z J, Yao K, Chen M, Chen H S and Liu Y M 2016 Phys. Rev. Lett. 117 157401
8 Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X and Li X P 2018 Nano Lett. 18 2885
9 Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
10 Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
11 ingh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
12 Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis C M and Economou E N 2015 ACS Photon. 2 287
13 Shang X J, Zhai X, Wang L L, He M D, Li Q, Luo X and Duan H G 2017 Appl. Phys. Express 10 052602
14 Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
15 Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902
16 Pfeiffer C, Zhang C, Ray V, Guo L J and Grbic A 2014 Phys. Rev. Lett. 113 023902
17 Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2012 Phys. Rev. Lett. 108 213905
18 Huang C, Feng Y J, Zhao J, Wang Z B and Jiang T 2012 Phys. Rev. B 85 195131
19 Liu D Y, Luo X Y, Liu J J and Don J F 2013 Chin. Phys. B 22 124202
20 Shi J H, Ma H F, Guan C Y, Wang Z P and Cui T J 2014 Phys. Rev. B 89 165128
21 Tang D F, Wang C, Pan W K, Li M H and Dong J F 2017 Opt. Express 25 11329
22 Xu K K, Xiao Z Y and Tang J Y 2016 Opt. Quantum Electron. 48 381
23 Tang B, Li Z Y, Liu Z Z, Callewaert F and Aydin K 2016 Sci. Rep. 6 39166
24 Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y and Wang Z H 2016 Wave Motion 66 1
25 Liu D J, Xiao Z Y, Ma X L and Wang Z H 2015 Opt. Commun. 354 272
26 Cheng Y Z, Gong R Z and Wu L 2016 Plasmonics 12 1113
27 Shi C Y Y, He X Y, Peng J, Xiao G N, Feng Liu, Lin F T and Zhang H 2019 Opt. Laser Technol. 114 28
28 Liu M, Xu Q, Chen X Y, Plum E, Li H, Zhang X Q, Zhang C H, Zou C W, Han J G and Zhang W L 2019 Sci. Rep. 9 4097
29 Wang Y H, Jin R C, Li J, Li J Q and Dong Z G 2018 Opt. Express 26 3508
30 Dai L L, Zhang Y P, O'Hara J F and Zhang H Y 2019 Opt. Express 27 35784
31 Li T, Hu F R, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2020 Chin. Phys. B 29 024203
32 Jiang H, Zhao W Y and Jiang Y Y 2017 Opt. Express 25 19732
33 Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035501
34 Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X and Wang Z H 2015 Opt. Commun. 338 359
35 Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H and Giessen H 2007 Nat. Mater. 7 31
36 Liu D J, Xiao Z Y, Ma X L and Wang Z H 2015 Appl. Phys. Express 8 052001
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[11] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[12] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[13] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[14] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!