Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 103102    DOI: 10.1088/1674-1056/25/10/103102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound

M A Ali1, M T Nasir4, M R Khatun2, A K M A Islam3, S H Naqib2
1 Department of Physics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh;
2 Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh;
3 International Islamic University Chittagong, 154/A College Road, Chittagong, Bangladesh;
4 Department of Arts & Sciences, Bangladesh Army University of Science and Technology, Saidpur-5310, Nilphamari, Bangladesh
Abstract  The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc2AlC are calculated using density functional theory (DFT). The structural properties of Sc2AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy (F), internal energy (E), entropy (S), and specific heat capacity (Cv) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector.
Keywords:  MAX compound      phonon dispersion      thermodynamical properties      optical properties  
Received:  21 April 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  65.40.-b (Thermal properties of crystalline solids)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  S H Naqib     E-mail:  salehnaqib@yahoo.com

Cite this article: 

M A Ali, M T Nasir, M R Khatun, A K M A Islam, S H Naqib An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound 2016 Chin. Phys. B 25 103102

[1] Nowotny H 1970 Progress Solid State Chemistry 2, ed. H Reiss (New York: Pergamon Press)
[2] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[3] Finkel P, Barsoum M W and El-Raghy T 2000 J. Appl. Phys. 87 1701
[4] Wang J and Zhou Y 2009 Ann. Rev. Mater. Res. 39 415
[5] Bouhemadou A, Khenata R, Kharoubi M and Medkour Y 2008 Solid State Commun. 146 175
[6] Cover M F, Warschkow O, Bilek M M M and McKenzie D R 2009 J. Phys.: Condens. Matter 21 305403
[7] Music D, Sun Z and Scheider J M 2005 Solid State Commun. 133 381
[8] Du Y L, Sun Z M, Hashimoto H and Tian W B 2009 Mater. Trans. 50 2173
[9] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[10] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 65 1045
[11] Perdew J P and Ernzerof K 1996 Phys. Rev. Lett. 77 3865
[12] Monkhorst H J and Pack J 1976 Phys. Rev. 13 5188
[13] Refson K, Clark S J and Tulip P R 2006 Phys. Rev. B 73 155114
[14] Yakoubi A, Beldi L, Bouhafs B, Ferhat M and Ruterana P 2006 Solid State Commun. 139 485
[15] Born M 1940 Math. Proc. Camb. Philos. Soc. 36 160
[16] Isaev E I https://qe-forge.org
[17] Lee C and Gonze X 1995 Phys. Rev. B 51 8610
[18] Debye P 1912 Ann. Phys. 39 789
[19] Petit A T and Dulong P L 1981 Ann. Chem. Phys. 10 395
[20] Hadi M A, Alam M A, Roknuzzaman M, Nasir M T, Islam A K M A and Naqib S H 2015 Chin. Phys. B 24 117401
[21] Materials Studio CASTEP Manual & Accelrys 2010,/http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.htmlS
[22] Ali M A, Islam A K M A and Ali M S 2012 J. Sci. Res. 4 1
[23] Ali M A, Jahan N and Islam A K M A 2014 J. Sci. Res. 6 407
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[10] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[14] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[15] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
No Suggested Reading articles found!