Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018205    DOI: 10.1088/1674-1056/25/1/018205
Special Issue: TOPICAL REVIEW — Fundamental physics research in lithium batteries
TOPICAL REVIEW—Fundamental physics research in lithium batteries Prev   Next  

Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青)
Chemistry Department, Brookhaven National Laboratory Upton, NY 11973, USA
Abstract  

Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

Keywords:  thermal stability      cathode      oxide      lithium ion batteries      safety  
Received:  14 May 2015      Revised:  04 June 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  88.80.ff (Batteries)  
  68.60.Dv (Thermal stability; thermal effects)  
Fund: 

Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

Corresponding Authors:  Xiao-Qing Yang     E-mail:  xyang@bnl.gov

Cite this article: 

Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青) Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability 2016 Chin. Phys. B 25 018205

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[3] Goodenough J B 2013 Acc. Chem. Res. 46 1053
[4] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[5] Balakrishnan P G, Ramesh R and Kumar T P 2006 J. Power Sources 155 401
[6] Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H and Chen C H 2012 J. Power Sources 208 210
[7] Hammami A, Raymond N and Armand M 2003 Nature 424 635
[8] Yang H, Bang H, Amine K and Prakash J 2005 J. Electrochem. Soc. 152 A73
[9] Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2068
[10] Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2078
[11] Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S and Sakai T 2008 J. Power Sources 181 155
[12] Huang X S 2011 J. Solid State Electrochem. 15 649
[13] Arora P and Zhang Z M 2004 Chem. Rev. 104 4419
[14] Sloop S E, Pugh J K, Wang S, Kerr J B and Kinoshita K 2001 Electrochem. Solid-State Lett. 4 A42
[15] Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj J S and Kim H 2004 J. Electrochim. Acta 50 247
[16] Sun X, Lee H S, Yang X Q and McBreen J 2002 Electrochem. Solid-State Lett. 5 A248
[17] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H and Hu W Q 2009 J. Power Sources 191 575
[18] Baba Y, Okada S and Yamaki J I 2002 Solid State Ionics 148 311
[19] MacNeil D, Lu Z, Chen Z and Dahn J R 2002 J. Power Sources 108 8
[20] Guilmard M, Croguennec L and Delmas C 2003 Chem. Mater. 15 4484
[21] Guilmard M, Croguennec L, Denux D and Delmas C 2003 Chem. Mater. 15 4476
[22] Dahn J, Fuller E, Obrovac M and Von Sacken U 1994 Solid State Ionics 69 265
[23] Arai H, Okada S, Sakurai Y and Yamaki J I 1998 Solid State Ionics 109 295
[24] Ong S P, Jain A, Hautier G, Kang B and Ceder G 2010 Electrochem. Commun. 12 427
[25] Li G H, Azuma H and Tohda M 2002 Electrochem. Solid-State Lett. 5 A135
[26] Andersson A S, Thomas J O, Kalska B and Haggstrom L 2000 Electrochem. Solid-State Lett. 3 66
[27] Belharouak I, Lu W Q, Vissers D and Amine K 2006 Electrochem. Commun. 8 329
[28] Golubkov A W, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A and Hacker V 2014 Rsc Adv. 4 3633
[29] Wang L, Maxisch T and Ceder G 2007 Chem. Mater. 19 543
[30] Wu L J, Nam K W, Wang X J, Zhou Y, Zheng J C, Yang X Q and Zhu Y 2011 Chem. Mater. 23 3953
[31] Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y and Yang X Q 2013 Chem. Mater. 25 337
[32] Nam K W, Bak S M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K Y and Yang X Q 2013 Adv. Funct. Mater. 23 1047
[33] Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interface 6 22594
[34] Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q and Nam K W 2014 Chem. Mater. 26 1108
[35] Hu E, Bak S M, Senanayake S D, Yang X Q, Nam K W, Zhang L and Shao M 2015 J. Power Sources 277 193
[36] Yabuuchi N and Ohzuku T 2003 J. Power Sources 119 171
[37] Ohzuku T and Makimura Y 2001 Chem. Lett. 30 642
[38] Ellis B L, Lee K T and Nazar L F 2010 Chem. Mater. 22 691
[39] Kim G H, Myung S T, Bang H J, Prakash J and Sun Y K 2004 Electrochem. Solid-State Lett. 7 A477
[40] Ngala J K, Chernova N A, Ma M, Mamak M, Zavalij P Y and Whittingham M S 2004 J. Mater. Chem. 14 214
[41] Oh S W, Park S H, Park C W and Sun Y K 2004 Solid State Ionics 171 167
[42] Zhong Q M, Bonakdarpour A, Zhang M J, Gao Y and Dahn J R 1997 J. Electrochem. Soc. 144 205
[43] Xiao J, Chen X L, Sushko P V, SushkoML, Kovarik L, Feng J J, Deng Z Q, Zheng J M, Graff G L, Nie Z M, Choi DW, Liu J, Zhang J G and Whittingham M S 2012 Adv. Mater. 24 2109
[44] Kunduraci M, Al-Sharab J F and Amatucci G G 2006 Chem. Mater. 18 3585
[45] Kunduraci M and Amatucci G G 2008 Electrochim. Acta 53 4193
[46] Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S and Martinet S 2009 J. Power Sources 189 344
[47] Shin D W, Bridges C A, Huq A, Paranthaman M P and Manthiram A. 2012 Chem. Mater. 24 3720
[48] Kim J H, Myung S T, Yoon C S, Kang S G and Sun Y K 2004 Chem. Mater. 16 906
[49] Ariyoshi K, Iwakoshi Y, Nakayama N and Ohzuku T 2004 J. Electrochem. Soc. 151 A296
[50] Bhaskar A, Gruner W, Mikhailova D and Ehrenberg H 2013 Rsc Adv. 3 5909
[51] Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Le Cras F and Martinet S 2008 Electrochim. Acta 53 4137
[52] Tarascon J M and Guyomard D 1993 Electrochim. Acta 38 1221
[53] Whittingham M S 2004 Chem. Rev. 104 4271
[54] Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H, Nam K W and Yang X Q 2014 Adv. Energy Mater. 4 1300950
[55] Reed J and Ceder G 2004 Chem. Rev. 4 10
[56] Figgis B N and Hitchman M A 2000 Mineralogical Applications of Crystal Field Theory (New York: Wiley-VCH) p. 116
[57] Burns R G 1970 Mineralogical Applications of Crystal Field Theory (New York: Cambridge University Press) p. 17
[58] Choi S and Manthiram A 2002 J. Electrochem. Soc 149 A1157
[59] Hu E, Bak S M, Liu Y, Liu J, Yu X, Zhou Y N, Zhou J, Khalifah P, Ariyoshi K, Nam K W and Yang X Q 2016 Adv. Energy Mater. 6 1501662
[60] Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358
[61] Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J and Ikuhara Y 2013 J. Am. Chem. Soc. 133 4661
[62] Sun Y K, Myung S T, Park B C, PrakashJ, Belharouak I and Amine K 2009 Nat. Mater. 8 320
[63] Lu X, MacNeil D D and Dahn J R 2001 Electrochem. Solid-State Lett. 4 A191
[64] Thackeray M M, Johnson C S, Vaughey J T, Li N and Hackney S A 2006 J. Mater. Chem. 15 2257
[65] Mohanty D, Kalnaus S, Meisner R A, Rhodes K, Li J, Payzant E A, Wood III D L and Daniel C 2013 J. Power Sources 229 239
[66] Lyu Y, Zhao N, Hu E, Xiao R, Yu X, Gu L, Yang X Q and Li H 2015 Chem. Mater. 27 5238
[67] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban'ere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230
[68] Gu M, Belharouak L, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C M 2013 ACS nano 7 760
[69] Xu B, Fell C R, Chi M and Meng Y S 2011 Energy Environ. Sci. 4 2223
[70] Zheng J, Gu M, Xiao J, Polzin B J, Yan P, Chen X, Wang C and Zhang J G 2014 Chem. Mater. 26 6320
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[6] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[7] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[8] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[9] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[10] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[11] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[12] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[15] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
No Suggested Reading articles found!