Special Issue:
TOPICAL REVIEW — Fundamental physics research in lithium batteries
|
TOPICAL REVIEW—Fundamental physics research in lithium batteries |
Prev
Next
|
|
|
Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability |
Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青) |
Chemistry Department, Brookhaven National Laboratory Upton, NY 11973, USA |
|
|
Abstract Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.
|
Received: 14 May 2015
Revised: 04 June 2015
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
88.80.ff
|
(Batteries)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
Fund: Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704). |
Corresponding Authors:
Xiao-Qing Yang
E-mail: xyang@bnl.gov
|
Cite this article:
Xiqian Yu(禹习谦), Enyuan Hu(胡恩源), Seongmin Bak,Yong-Ning Zhou(周永宁), Xiao-Qing Yang(杨晓青) Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability 2016 Chin. Phys. B 25 018205
|
[1] |
Tarascon J M and Armand M 2001 Nature 414 359
|
[2] |
Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
|
[3] |
Goodenough J B 2013 Acc. Chem. Res. 46 1053
|
[4] |
Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
|
[5] |
Balakrishnan P G, Ramesh R and Kumar T P 2006 J. Power Sources 155 401
|
[6] |
Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H and Chen C H 2012 J. Power Sources 208 210
|
[7] |
Hammami A, Raymond N and Armand M 2003 Nature 424 635
|
[8] |
Yang H, Bang H, Amine K and Prakash J 2005 J. Electrochem. Soc. 152 A73
|
[9] |
Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2068
|
[10] |
Richard M N and Dahn J R 1999 J. Electrochem. Soc. 146 2078
|
[11] |
Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S and Sakai T 2008 J. Power Sources 181 155
|
[12] |
Huang X S 2011 J. Solid State Electrochem. 15 649
|
[13] |
Arora P and Zhang Z M 2004 Chem. Rev. 104 4419
|
[14] |
Sloop S E, Pugh J K, Wang S, Kerr J B and Kinoshita K 2001 Electrochem. Solid-State Lett. 4 A42
|
[15] |
Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj J S and Kim H 2004 J. Electrochim. Acta 50 247
|
[16] |
Sun X, Lee H S, Yang X Q and McBreen J 2002 Electrochem. Solid-State Lett. 5 A248
|
[17] |
Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H and Hu W Q 2009 J. Power Sources 191 575
|
[18] |
Baba Y, Okada S and Yamaki J I 2002 Solid State Ionics 148 311
|
[19] |
MacNeil D, Lu Z, Chen Z and Dahn J R 2002 J. Power Sources 108 8
|
[20] |
Guilmard M, Croguennec L and Delmas C 2003 Chem. Mater. 15 4484
|
[21] |
Guilmard M, Croguennec L, Denux D and Delmas C 2003 Chem. Mater. 15 4476
|
[22] |
Dahn J, Fuller E, Obrovac M and Von Sacken U 1994 Solid State Ionics 69 265
|
[23] |
Arai H, Okada S, Sakurai Y and Yamaki J I 1998 Solid State Ionics 109 295
|
[24] |
Ong S P, Jain A, Hautier G, Kang B and Ceder G 2010 Electrochem. Commun. 12 427
|
[25] |
Li G H, Azuma H and Tohda M 2002 Electrochem. Solid-State Lett. 5 A135
|
[26] |
Andersson A S, Thomas J O, Kalska B and Haggstrom L 2000 Electrochem. Solid-State Lett. 3 66
|
[27] |
Belharouak I, Lu W Q, Vissers D and Amine K 2006 Electrochem. Commun. 8 329
|
[28] |
Golubkov A W, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A and Hacker V 2014 Rsc Adv. 4 3633
|
[29] |
Wang L, Maxisch T and Ceder G 2007 Chem. Mater. 19 543
|
[30] |
Wu L J, Nam K W, Wang X J, Zhou Y, Zheng J C, Yang X Q and Zhu Y 2011 Chem. Mater. 23 3953
|
[31] |
Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y and Yang X Q 2013 Chem. Mater. 25 337
|
[32] |
Nam K W, Bak S M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K Y and Yang X Q 2013 Adv. Funct. Mater. 23 1047
|
[33] |
Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interface 6 22594
|
[34] |
Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q and Nam K W 2014 Chem. Mater. 26 1108
|
[35] |
Hu E, Bak S M, Senanayake S D, Yang X Q, Nam K W, Zhang L and Shao M 2015 J. Power Sources 277 193
|
[36] |
Yabuuchi N and Ohzuku T 2003 J. Power Sources 119 171
|
[37] |
Ohzuku T and Makimura Y 2001 Chem. Lett. 30 642
|
[38] |
Ellis B L, Lee K T and Nazar L F 2010 Chem. Mater. 22 691
|
[39] |
Kim G H, Myung S T, Bang H J, Prakash J and Sun Y K 2004 Electrochem. Solid-State Lett. 7 A477
|
[40] |
Ngala J K, Chernova N A, Ma M, Mamak M, Zavalij P Y and Whittingham M S 2004 J. Mater. Chem. 14 214
|
[41] |
Oh S W, Park S H, Park C W and Sun Y K 2004 Solid State Ionics 171 167
|
[42] |
Zhong Q M, Bonakdarpour A, Zhang M J, Gao Y and Dahn J R 1997 J. Electrochem. Soc. 144 205
|
[43] |
Xiao J, Chen X L, Sushko P V, SushkoML, Kovarik L, Feng J J, Deng Z Q, Zheng J M, Graff G L, Nie Z M, Choi DW, Liu J, Zhang J G and Whittingham M S 2012 Adv. Mater. 24 2109
|
[44] |
Kunduraci M, Al-Sharab J F and Amatucci G G 2006 Chem. Mater. 18 3585
|
[45] |
Kunduraci M and Amatucci G G 2008 Electrochim. Acta 53 4193
|
[46] |
Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S and Martinet S 2009 J. Power Sources 189 344
|
[47] |
Shin D W, Bridges C A, Huq A, Paranthaman M P and Manthiram A. 2012 Chem. Mater. 24 3720
|
[48] |
Kim J H, Myung S T, Yoon C S, Kang S G and Sun Y K 2004 Chem. Mater. 16 906
|
[49] |
Ariyoshi K, Iwakoshi Y, Nakayama N and Ohzuku T 2004 J. Electrochem. Soc. 151 A296
|
[50] |
Bhaskar A, Gruner W, Mikhailova D and Ehrenberg H 2013 Rsc Adv. 3 5909
|
[51] |
Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Le Cras F and Martinet S 2008 Electrochim. Acta 53 4137
|
[52] |
Tarascon J M and Guyomard D 1993 Electrochim. Acta 38 1221
|
[53] |
Whittingham M S 2004 Chem. Rev. 104 4271
|
[54] |
Yu X, Lyu Y, Gu L, Wu H, Bak S M, Zhou Y, Amine K, Ehrlich S N, Li H, Nam K W and Yang X Q 2014 Adv. Energy Mater. 4 1300950
|
[55] |
Reed J and Ceder G 2004 Chem. Rev. 4 10
|
[56] |
Figgis B N and Hitchman M A 2000 Mineralogical Applications of Crystal Field Theory (New York: Wiley-VCH) p. 116
|
[57] |
Burns R G 1970 Mineralogical Applications of Crystal Field Theory (New York: Cambridge University Press) p. 17
|
[58] |
Choi S and Manthiram A 2002 J. Electrochem. Soc 149 A1157
|
[59] |
Hu E, Bak S M, Liu Y, Liu J, Yu X, Zhou Y N, Zhou J, Khalifah P, Ariyoshi K, Nam K W and Yang X Q 2016 Adv. Energy Mater. 6 1501662
|
[60] |
Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H and Chen L 2013 Adv. Energy Mater. 3 1358
|
[61] |
Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J and Ikuhara Y 2013 J. Am. Chem. Soc. 133 4661
|
[62] |
Sun Y K, Myung S T, Park B C, PrakashJ, Belharouak I and Amine K 2009 Nat. Mater. 8 320
|
[63] |
Lu X, MacNeil D D and Dahn J R 2001 Electrochem. Solid-State Lett. 4 A191
|
[64] |
Thackeray M M, Johnson C S, Vaughey J T, Li N and Hackney S A 2006 J. Mater. Chem. 15 2257
|
[65] |
Mohanty D, Kalnaus S, Meisner R A, Rhodes K, Li J, Payzant E A, Wood III D L and Daniel C 2013 J. Power Sources 229 239
|
[66] |
Lyu Y, Zhao N, Hu E, Xiao R, Yu X, Gu L, Yang X Q and Li H 2015 Chem. Mater. 27 5238
|
[67] |
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban'ere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230
|
[68] |
Gu M, Belharouak L, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C M 2013 ACS nano 7 760
|
[69] |
Xu B, Fell C R, Chi M and Meng Y S 2011 Energy Environ. Sci. 4 2223
|
[70] |
Zheng J, Gu M, Xiao J, Polzin B J, Yan P, Chen X, Wang C and Zhang J G 2014 Chem. Mater. 26 6320
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|