Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098104    DOI: 10.1088/1674-1056/24/9/098104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Raman scattering study of phase transition in Lu2O3-Ta2O5

Wang Xiao-Fei (王小飞)a b, Xing Xue (邢雪)a b, Zhang Qing-Li (张庆礼)a, You Jing-Lin (尤静林)c, Wu Jun (伍俊)c, Zhang De-Ming (张德明)a, Sun Yu (孙彧)a, Sun Dun-Lu (孙敦陆)a, Yin Shao-Tang (殷绍唐)a
a The Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
c Shanghai University, Shanghai Key Laboratory of Modern Metallurgy & Materials Processing, Shanghai 200072, China
Abstract  The lutetium tantalate compounds obtained from Lu2O3-Ta2O5 with a molar ratio of 0.515:0.485 were studied by Raman scattering and x-ray diffraction. The results of the room temperature Raman scattering indicate that the sample has a phase transition between 1830 ℃ and 1872 ℃, the polycrystalline is a mixture of M'-LuTaO4 and Lu3TaO7 (Fm3m) when it is prepared at 1830 ℃, and a mixture of M-LuTaO4 (B112/b) and Lu3TaO7 (Fm3m) when it is prepared at above 1872 ℃. The sample melts at a temperature of 2050 ℃. The phase transition of the sample prepared at 2050 ℃ was also investigated by the high-temperature Raman spectra, and the result indicates that no phase transition occurs between room temperature and 1400 ℃, which is consistent with the results from the x-ray diffraction.
Keywords:  LuTaO4      phase transition      Raman scattering      x-ray diffraction  
Received:  03 February 2015      Revised:  12 March 2015      Accepted manuscript online: 
PACS:  81.30.Dz (Phase diagrams of other materials)  
  87.64.kp (Raman)  
  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51272254, 51102239, and 61205173) and the National Science Fund for Distinguished Young Scholars, China (Grant No. 61405206).
Corresponding Authors:  Zhang Qing-Li     E-mail:  zql@aiofm.ac.cn

Cite this article: 

Wang Xiao-Fei (王小飞), Xing Xue (邢雪), Zhang Qing-Li (张庆礼), You Jing-Lin (尤静林), Wu Jun (伍俊), Zhang De-Ming (张德明), Sun Yu (孙彧), Sun Dun-Lu (孙敦陆), Yin Shao-Tang (殷绍唐) Raman scattering study of phase transition in Lu2O3-Ta2O5 2015 Chin. Phys. B 24 098104

[1] Guerassimova N, Garnier N, Dujardin C, Petrosyan A G and Pedrini C 2001 Chem Phys. Lett. 339 197
[2] Belogurov S, Bressi G, Carugno G, Moszynski M, Czarnacki W, Kapusta M and Szawlowski M 2003 Nucl. Insrum. Methods Phys. Res. A 496 385
[3] Nikl M, Yoshikawa A, Vedda A and Fukuda T 2006 J. Cryst. Growth. 292 416
[4] Issler S L and Torardi C C 1995 J. Alloys Compd. 229 54
[5] Xia Y J, Guan Z S and He T 2014 Chin. Phys. B 23 087701
[6] Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P and Yang G J 2014 Chin. Phys. B 23 087809
[7] Gao J Y, Zhang Q L, Sun D L, Liu W P, Yang H Y, Wang X F and Yin S T 2013 Acta Phys. Sin. 62 013102 (in Chinese)
[8] Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H and Yin S T 2013 Chin. Phys. B 22 067105
[9] Brixner L H 1987 Mater. Chem. Phys. 16 253
[10] Blasse G and Bail A 1970 J. Lumin. 3 109
[11] Brixner L H 1987 Inorg. Chim. Acta 140 97
[12] Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q and Yin S T 2009 J. Alloys Compd. 474 226
[13] Chen S W, Liu X L, Gu M, Ni C, Liu B and Huang S M 2013 J. Lumin. 140 1
[14] Zhao Y P, Zhang Q L, Guo C X, Shi C S, Peng F, Yang H J, Sun D L, Luo J Q and Liu W P 2014 J. Lumin. 155 165
[15] Siqueira K P F, Carvalho G B and Dias A 2011 Dalton Trans. 40 9454
[16] Timfeeva N I and Mordovin O A 1970 Russ. J. Inorg. Chem. (Eng. Trans.) 15 440
[17] Yokogawa Y, Ishizawa N, Sõmiya S and Yoshimura M 1991 J. Am. Ceram. Soc. 74 2073
[18] Xing X, Wang X F, Zhang Q L, Sun G H, Liu W P, Sun D L and Yin S T 2014 Acta Phys. Sin. 63 248107 (in Chinese)
[19] Titov Y A, Sych A M, Sokolov A N, Kapshuk A A, Markiv V Y and Belyavina N M 2000 J. Alloys Compd. 311 252
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!