Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094211    DOI: 10.1088/1674-1056/24/9/094211
RAPID COMMUNICATION Prev   Next  

Beam propagation method for wide-fieldnonlinear wave mixing microscope

Lv Yong-Gang (吕永钢)a, Ji Zi-Heng (纪子衡)a, Yu Wen-Tao (于文韬)a, Shi Ke-Bin (施可彬)a b
a State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

We develop a nonlinear beam propagation method for signal generation in inhomogeneous medium for wide-field nonlinear wave mixing microscope. Experimental results performed in wide-field coherent anti-Stokes Raman imaging have shown good agreement with the developed theory.

Keywords:  nonlinear optics      four-wave mixing      wave propagation      nonlinear microscopy  
Received:  15 May 2015      Revised:  10 June 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  78.47.nj (Four-wave mixing spectroscopy)  
  42.25.Dd (Wave propagation in random media)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174019, 61322509 and 11121091) and the National Basic Research Program of China (Grant No. 2013CB921904).

Corresponding Authors:  Shi Ke-Bin     E-mail:  kebinshi@pku.edu.cn

Cite this article: 

Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬) Beam propagation method for wide-fieldnonlinear wave mixing microscope 2015 Chin. Phys. B 24 094211

[1] Hsieh C L, Grange R, PuY and Psaltis D 2010 Biomaterials 31 2272
[2] Toytman I, Cohn K, Smith T, Simanovskii D and Palanker D 2007 Opt. Lett. 32 1941
[3] Heinrich C, Bernet S and Ritsch-Marte M 2004 Appl. Phys. Lett. 84 816
[4] Feit M D and Fleck J A 1978 Appl. Opt. 17 3990
[5] Vanroey J, Vanderdonk J and Lagasse P E 1981 J. Opt. Soc. Am. 71 803
[6] Saitoh K and Koshiba M 2002 IEEE J. Quantum Electronics 38 927
[7] Chung Y and Dagli N 1990 IEEE J. Quantum Electronics 26 1335
[8] Deiterding R, Glowinski R, Oliver H and Poole S 2013 J. Lightwave Technol. 31 2008
[9] Li Y Q, Wu Z S, Zhang Y Y and Wang M J 2014 Chin. Phys. B 23 074202
[10] Li Y Q, Wu Z S and Wang M J 2014 Chin. Phys. B 23 064216
[11] Cheng J X and Xie X S 2004 J. Phys. Chem. B 108 827
[12] Boyd R W 2003 Nonlinear Optics, 2nd. edn. (New York: Academic Press) p. 499
[13] Liu W, Liu S L, Chen D N and Niu H B 2014 Chin. Phys. B 23 0104202
[14] Agrawal G P 2007 Nonlinear Fiber Optics, 3rd edn. (New York: Academic press) p. 51
[15] Toytman I, Simanovskii D and Palanker D 2009 Opt. Express 17 7339
[16] Nichelatti E and Pozzi G 1998 Appl. Optics 37 9
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[6] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[7] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[8] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[9] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[12] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[13] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[14] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[15] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
No Suggested Reading articles found!