Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038701    DOI: 10.1088/1674-1056/ac1e1a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Long range electromagnetic field nature of nerve signal propagation in myelinated axons

Qing-Wei Zhai(翟卿伟)1, Kelvin J A Ooi(黄健安)2,†, Sheng-Yong Xu(许胜勇)3,‡, and C K Ong(翁宗经)2,4
1 School of Electrical and Computer Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia;
2 Department of Physics, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia;
3 Department of Electronics, School of Electronics Engineering and Computer Science, Peking University. Beijing 100871, China;
4 Department of Physics, National University of Singapore,;
2 Science Drive 3, 117551 Singapore
Abstract  The nature of saltatory conduction in myelinated axon described by equivalent circuit and circuit theory is still contentious. Recent experimental observations of action potentials transmitting through disjointed nerve fibers strongly suggest an electromagnetic wave propagation mechanism of the nerve signals. In this paper, we employ the electromagnetic wave model of the myelinated axon to describe action potential signal propagation. We use the experimental frequency-dependent conductivity and permittivity values of the nerve tissues in order to reliably calculate the electromagnetic modes by using electromagnetic mode solvers. We find that the electromagnetic waves above 10 {kHz} can be well confined in extracellular fluid—myelin sheath—intracellular fluid waveguide and propagate a distance of 7 mm without much attenuation. Our study may serve as one of the fundamental researches for the better understanding of the nervous system.
Keywords:  action potential propagation and axons      neuronal wave propagation      neuroscience      electrodynamics in the nervous system  
Received:  02 June 2021      Revised:  15 July 2021      Accepted manuscript online:  17 August 2021
PACS:  87.19.lb (Action potential propagation and axons)  
  87.19.lq (Neuronal wave propagation)  
  87.19.L- (Neuroscience)  
  87.19.ld (Electrodynamics in the nervous system)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701302) and the Xiamen University Malaysia Research Fund, Malaysia (Grant No. XMUMRF/2020-C5/IMAT/0012).
Corresponding Authors:  Kelvin J A Ooi, Sheng-Yong Xu     E-mail:  kelvin.ooi@xmu.edu.my;xusy@pku.edu.cn

Cite this article: 

Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经) Long range electromagnetic field nature of nerve signal propagation in myelinated axons 2022 Chin. Phys. B 31 038701

[1] Chua L 2013 Nanotechnology 24 383001
[2] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[3] Hodgkin A L and Huxley A F 1952 J. Physiology 116 473
[4] Hodgkin A L and Huxley A F 1952 J. Physiology 116 449
[5] Hodgkin A L, Huxley A F and Katz B 1952 J. Physiology 116 424
[6] Hodgkin A L and Huxley A F 1952 J. Physiology 117 500
[7] Hodgkin A L and Huxley A F 1952 J. Physiology 116 497
[8] Machta B B and Hady A EI 2015 Nat. Commun. 108 206a
[9] Heimburg T and Jackson A D 2005 Proc. Natl. Acad. Sci. USA 102 9790
[10] Poznanski R R, Cacha L A, Al-Wesabi Y M S, Ali J, Bahadoran M, Yupapin P P and Yunus J 2017 Sci. Rep. 7 1
[11] Cohen C C, Popovic M A, Klooster J, Weil M T, M?bius W, Nave K A and Kole M H 2020 Cell 180 311
[12] Akaishi T 2018 Neural Regeneration Research 13 779
[13] Akaishi T 2018 The Tohoku Journal of Experimental Medicine 244 151
[14] Xu J, Xu Y, Sun W, Li M and Xu S 2018 Sci. Rep. 8 1
[15] Xu S and Xu J 2017 Med. Surg. Ophthalmol. Res. 1 000502
[16] Xu S, Xu J and Yang F 2016 Neuroscience and Biomedical Engineering 4 230
[17] Xue J and Xu S 2012 arXiv:1210.2140. 12[q-bio.NC]
[18] Zangari A, Micheli D, Galeazzi R, and Tozzi A 2018 Sci. Rep. 8 539
[19] Chiang C C, Shivacharan R S, Wei X, Gonzalez-Reyes L E and Durand D M 2019 J. Physiology 597 249
[20] Shivacharan R S, Chiang C C, Zhang M, Gonzalez-Reyes L E and Durand D M 2019 Experimental Neurology 317 119
[21] Bolzoni F and Jankowska E 2019 Eur. J. Neurosci. 50 3101
[22] Chawla A, Morgera S D and Snider A D 2019 IEEE/ACM Trans. Comput. Biol. Bioinform. 18 790
[23] Gadsby D C 2009 Nature Reviews Molecular Cell Biology 10 344
[24] Xiang Z, Tang C, Chang C and Liu G 2020 Sci. Bull. 65 308
[25] Huang Y, Shi L, Li J, Lou W, Yuan H, Yang W and Chang K 2021 Sci. China-Physics, Mechanics & Astronomy 64 1
[26] Song B and Shu Y 2020 Nano Research 13 38
[27] Zhang X and Jiang L 2019 Nano Research 12 1219
[28] Offner F, Weinberg A and Young G 1940 Bull. Math. Biophys. 2 89
[29] Rushton W A H 1951 J. Physiology 115 101
[30] Scott A 2002 Neuroscience:A mathematical primer (Berlin, Heidelberg:Springer Science & Business Media) p. 83
[31] Huxley A F and Stämpeli R 1949 J. Physiology 108 315
[32] Frankenhaeuser B 1952 J. Physiology 118 107
[33] Xu K and Terakawa S 1999 Journal of Experimental Biology 202 1979
[34] Shneider M N and Pekker M 2019 J. Appl. Phys. 125 211101
[35] Liu G, Chang C, Qiao Z, et al. 2019 Adv. Funct. Mater. 29 1807862
[36] Cole K S and Cole R H 1941 J. Chem. Phys. 9 341
[37] Gabriel S, Lau R W and Gabriel C 1996 Phys. Med. Biol. 41 2251
[38] Gabriel C 1996 Compilation of the dielectric properties of body tissues at RF and microwave frequencies. King's Coll London (United Kingdom) Department of Physics
[39] Xu J, Xu S, Wang F and Xu S 2021 Chin. Phys. B 30 028701
[40] Akaishi T 2017 Front. Physiol. 8 798
[1] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
No Suggested Reading articles found!