Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094212    DOI: 10.1088/1674-1056/24/9/094212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

Shangguan Ming-Jia (上官明佳)a, Xia Hai-Yun (夏海云)a b c, Dou Xian-Kang (窦贤康)a b, Wang Chong (王冲)a, Qiu Jia-Wei (裘家伟)a, Zhang Yun-Peng (张云鹏)a, Shu Zhi-Feng (舒志峰)a b, Xue Xiang-Hui (薛向辉)a b
a CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China;
b Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
c Collaborative Innovation Center of Astronautical Science and Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh-Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett-Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry-Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme.
Keywords:  Rayleigh Doppler lidar      Rayleigh-Brillouin spectrum      temperature      pressure      Mie contamination  
Received:  15 January 2015      Revised:  06 March 2015      Accepted manuscript online: 
PACS:  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41174131, 41274151, 41304123, 41121003 and 41025016).
Corresponding Authors:  Xia Hai-Yun     E-mail:  hsia@ustc.edu.cn

Cite this article: 

Shangguan Ming-Jia (上官明佳), Xia Hai-Yun (夏海云), Dou Xian-Kang (窦贤康), Wang Chong (王冲), Qiu Jia-Wei (裘家伟), Zhang Yun-Peng (张云鹏), Shu Zhi-Feng (舒志峰), Xue Xiang-Hui (薛向辉) Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination 2015 Chin. Phys. B 24 094212

[1] Stoffelen A, Pailleux J, Källen E, Vaughan J M, Isaksen L, Flamant P, Wergen W, Andersson E, Schyberg H, Culoma A, Meynart R, Endemann M and Ingmann P 2005 Bull. Am. Meteorol. Soc. 86 73
[2] Korb C L, Gentry B M, Li S X and Flesia C 1998 Appl. Opt. 37 3097
[3] Flesia C and Korb C L 1999 Appl. Opt. 38 432
[4] Souprayen C, Garnier A Hertzog A, Hauchecorne A and Porteneuve J 1999 Appl. Opt. 38 2410
[5] Souprayen C, Garnier A and Hertzog A 1999 Appl. Opt. 38 2422
[6] Gentry B M, Chen H and Li S X 2000 Opt. Lett. 25 1231
[7] Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F and Chaloupy M 2009 J. Atmos. Ocean. Tech. 26 2501
[8] Paffrath U, Lemmerz C, Reitebuch O, Witschas B, Nikolaus I and Freudenthaler V 2009 J. Atmos. Ocean. Technol. 26 2516
[9] Baumgarten G 2010 Atmos. Meas. Tech. Discuss. 3 1509
[10] Xia H, Sun D, Yang Y, Shen F Dong J and Kobayashi T 2007 Appl. Opt. 46 7120
[11] Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y and Chen T 2012 Opt. Express 20 15286
[12] Tang L, Wang Y T, Shu Z F, Dong J H, Wang G C, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S and Cha H 2010 Chin. Phys. Lett. 27 114207
[13] Tang L, Wang C R, Wu H B and Dong J H 2012 Chin. Phys. Lett. 29 014213
[14] Tenti G, Boley C and Desai R 1974 Can. J. Phys. 52 285
[15] Gu Z Y and Ubachs W 2014 J. Chem. Phys. 141 104329
[16] Witschas B 2011 Appl. Opt. 50 267
[17] Ma Y, Fan F, Liang K, Li H, Yu Y and Zhou B 2012 J. Opt. 14 095703
[18] Xia H, Dou X, Shangguan M, Zhao R, Sun D, Wang C, Qiu J, Shu Z, Xue X, Han Y and Han Y 2014 Opt. Express 22 21775
[19] Dabas A, Denneulin M, Flamant P, Loth C, Garnier A and Dolfi-Bouteyre A 2008 Tellus A 60 206
[20] Zhao R C, Xia H Y, Dou X K, Sun D S, Han Y L, Shangguan M J, Guo J and Shu Z F 2015 Chin. Phys. B 24 24218
[21] Bazhenov O E, Burlakov V D, Dolgii S I and Nevzorov A V 2012 Int. J. Opt. 2012 786295
[22] Chen W N, Tsao C C and Nee J B 2004 J. Atmos. Sol. Terr. Phys. 66 39
[23] Giannakaki E, Balis D S Amiridis V and Kazadzis S 2007 Atmos. Chem. Phys. 7 5519
[24] Benjamin W, Gu Z and Ubachs W 2014 Opt. Express 22 29655
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[5] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[10] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[11] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[12] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[13] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[14] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[15] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
No Suggested Reading articles found!