Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090304    DOI: 10.1088/1674-1056/24/9/090304
GENERAL Prev   Next  

Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation

Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  

We investigate the quantum-memory-assisted entropic uncertainty for an entangled two-qubit system in a local quantum noise channel with JJ-symmetric operation performing on one of the two particles. Our results show that the quantum-memory-assisted entropic uncertainty in the qubits system can be reduced effectively by the local JJ-symmetric operation. Physical explanations for the behavior of the quantum-memory-assisted entropic uncertainty are given based on the property of entanglement of the qubits system and the non-locality induced by the re-normalization procedure for the non-Hermitian JJ-symmetric operation.

Keywords:  entropic uncertainty relation      JJ-symmetric operation      quantum entanglement  
Received:  30 January 2015      Revised:  10 March 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374096 and 11074072).

Corresponding Authors:  Fang Mao-Fa     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟) Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation 2015 Chin. Phys. B 24 090304

[1] Bender C M and Boettcher S 1988 Phys. Rev. Lett. 80 5243
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[3] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
[4] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[5] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[6] Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101(R)
[7] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[8] Zheng C, Hao L and Long G L 2013 Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 371 20120053
[9] Liu Y and Cui J X 2014 Chin. Sci. Bull. 59 2298
[10] Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[11] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[12] Robertson H P 1929 Phys. Rev. 34 163
[13] Bialynicki-Birula I 2007 AIP Conf. Proc. 889 52
[14] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[15] Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
[16] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[17] Bertal M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[18] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[19] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[20] Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
[21] Yao C M, Chen Z H, Ma Z H, Severini S and Serafini A 2014 Sci. China-Phys. Mech. Astron. 57 1703
[22] Schrödinger E 1935 Naturwissenschaften 23 807
[23] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[24] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[25] Su X L 2014 Chin. Sci. Bull. 59 1083
[26] Zou Y and Li Y P 2009 Chin. Phys. B 18 2794
[27] Feng H R, Meng X J, Li P and Zheng Y J 2014 Chin. Phys. B 23 073301
[28] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[29] Wang G F, Lü J M and Wang L C 2014 Chin. Phys. B 23 050311
[30] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[31] Bennett C H 1996 Phys. Rev. Lett. 76 722
[32] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[33] Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
[34] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
[35] Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318
[36] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
No Suggested Reading articles found!