|
|
Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation |
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We investigate the quantum-memory-assisted entropic uncertainty for an entangled two-qubit system in a local quantum noise channel with JJ-symmetric operation performing on one of the two particles. Our results show that the quantum-memory-assisted entropic uncertainty in the qubits system can be reduced effectively by the local JJ-symmetric operation. Physical explanations for the behavior of the quantum-memory-assisted entropic uncertainty are given based on the property of entanglement of the qubits system and the non-locality induced by the re-normalization procedure for the non-Hermitian JJ-symmetric operation.
|
Received: 30 January 2015
Revised: 10 March 2015
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374096 and 11074072). |
Corresponding Authors:
Fang Mao-Fa
E-mail: mffang@hunnu.edu.cn
|
Cite this article:
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟) Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation 2015 Chin. Phys. B 24 090304
|
[1] |
Bender C M and Boettcher S 1988 Phys. Rev. Lett. 80 5243
|
[2] |
Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
|
[3] |
Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
|
[4] |
Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
|
[5] |
Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
[6] |
Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101(R)
|
[7] |
Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
|
[8] |
Zheng C, Hao L and Long G L 2013 Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 371 20120053
|
[9] |
Liu Y and Cui J X 2014 Chin. Sci. Bull. 59 2298
|
[10] |
Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
|
[11] |
Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
|
[12] |
Robertson H P 1929 Phys. Rev. 34 163
|
[13] |
Bialynicki-Birula I 2007 AIP Conf. Proc. 889 52
|
[14] |
Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
|
[15] |
Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
|
[16] |
Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[17] |
Bertal M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
|
[18] |
Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
|
[19] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[20] |
Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
|
[21] |
Yao C M, Chen Z H, Ma Z H, Severini S and Serafini A 2014 Sci. China-Phys. Mech. Astron. 57 1703
|
[22] |
Schrödinger E 1935 Naturwissenschaften 23 807
|
[23] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[24] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[25] |
Su X L 2014 Chin. Sci. Bull. 59 1083
|
[26] |
Zou Y and Li Y P 2009 Chin. Phys. B 18 2794
|
[27] |
Feng H R, Meng X J, Li P and Zheng Y J 2014 Chin. Phys. B 23 073301
|
[28] |
Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
|
[29] |
Wang G F, Lü J M and Wang L C 2014 Chin. Phys. B 23 050311
|
[30] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[31] |
Bennett C H 1996 Phys. Rev. Lett. 76 722
|
[32] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[33] |
Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
|
[34] |
Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
|
[35] |
Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318
|
[36] |
Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|