|
|
Phase effect on dynamics of quantum discord modulated by interaction between qubits |
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We study the effects of the interaction strength and the initial phase on the dynamics of quantum discord in a two-qubit system under both spontaneous emission and dephasing noisy channels. It is shown that the time evolution of quantum discord displays quicker oscillations with increasing inter-qubit interaction strength but the effect of the initial phase closely depends on the interaction between the qubits. Only for non-zero inter-qubit interaction cases, the evolution of quantum discord is affected by the initial phase and its oscillating amplitude increases with increasing initial phase. A comparison between evolutions of quantum discord and entanglement is also made.
|
Received: 19 January 2015
Revised: 28 March 2015
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), the Scientific Research Foundation of the Education Department of Hunan Province, China (Grant No. 13C039), and the Construct Program of the National Key Discipline, China. |
Corresponding Authors:
Zeng Hao-Sheng
E-mail: hszeng@hunnu.edu.cn
|
Cite this article:
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生) Phase effect on dynamics of quantum discord modulated by interaction between qubits 2015 Chin. Phys. B 24 090303
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[2] |
Schröinger E 1935 Math. Proc. Camb. Phil. Soc. 31 555
|
[3] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[4] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[5] |
Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
|
[6] |
Spehner D 2014 J. Math. Phys. 55 075211
|
[7] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[8] |
Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[9] |
Luo S 2008 Phys. Rev. A 77 042303
|
[10] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[11] |
Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
|
[12] |
Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
|
[13] |
Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
|
[14] |
Luo S and Fu S 2010 Phys. Rev. A 82 034302
|
[15] |
Luo S and Fu S 2012 Theor. Math. Phys. 171 870
|
[16] |
Ann K and Jaeger G 2009 Found. Phys. 39 790
|
[17] |
Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
|
[18] |
Ma J, Sun Z, Wang X G and Nori F 2012 Phys. Rev. A 85 062323
|
[19] |
Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Process 12 1637
|
[20] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[21] |
Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
|
[22] |
Xu Z Y, Yang W L, Xiao X and Feng M 2011 J. Phys. A: Math. Theor. 44 395304
|
[23] |
Liu X and Wu W 2014 Chin. Phys. B 23 070303
|
[24] |
Yao C M, He Z, Chen Z H and Nie J J 2013 Chin. Phys. Lett. 30 090302
|
[25] |
Yu T and Eberly T H 2004 Phys. Rev. Lett. 93 140404
|
[26] |
Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
|
[27] |
Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
|
[28] |
Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
|
[29] |
Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
|
[30] |
Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
|
[31] |
Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
|
[32] |
Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
|
[33] |
Guo Y N, Fang M F, Liu X and Yang B Y 2014 Chin. Phys. B 23 034204
|
[34] |
Tang N, Cheng W and Zeng H S 2014 Eur. Phys. J. D 68 278
|
[35] |
Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309
|
[36] |
Han M, Zhang Y J and Xia Y J 2011 Int. J. Quantum Inf. 9 1413
|
[37] |
Das S and Agarwal G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 141003
|
[38] |
Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B: At. Mol. Opt. Phys. 44 015503
|
[39] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[40] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[41] |
Werner R F 1989 Phys. Rev. A 40 4277
|
[42] |
Zhang J S, Chen L, Abdel-Aty M and Chen A X 2012 Eur. Phys. J. D 66 2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|