Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088105    DOI: 10.1088/1674-1056/24/8/088105
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Silicene transistors–A review

Quhe Ru-Ge (屈贺如歌)a c d, Wang Yang-Yang (王洋洋)a e, Lü Jin (吕劲)a b
a State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
c State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
d School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
e Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility, the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor (FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap. An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene's strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.

Keywords:  silicene      two-dimensional materials      transistor      electronic device  
Received:  18 March 2015      Revised:  26 April 2015      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  72.80.Vp (Electronic transport in graphene)  
  61.46.-w (Structure of nanoscale materials)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274016, 11474012, and 1207141) and the National Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB619304).

Corresponding Authors:  Lü Jin     E-mail:

Cite this article: 

Quhe Ru-Ge (屈贺如歌), Wang Yang-Yang (王洋洋), Lü Jin (吕劲) Silicene transistors–A review 2015 Chin. Phys. B 24 088105

[1] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotech. 3 491
[2] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[3] Schwierz F 2010 Nat. Nanotech. 5 487
[4] Castro E V, Novoselov K S, Morozov S V, Peres N M R, dos Santos J M B L, Nilsson J, Guinea F, Geim A K and Neto A H C 2007 Phys. Rev. Lett. 99 216802
[5] Quhe R G, Zheng J, Luo G, Liu Q, Qin R, Zhou J, Yu D, Nagase S, Mei W N, Gao Z and Lu J 2012 NPG Asia Mater. 4 e6
[6] Tian X, Xu J and Wang X 2010 J. Phys. Chem. B 114 11377
[7] Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L and Li L J 2011 ACS Nano 5 7517
[8] Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[9] Li X, Mullen J T, Jin Z, Borysenko K M, Buongiorno Nardelli M and Kim K W 2013 Phys. Rev. B 87 115418
[10] Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P and Lu J 2012 Nano Lett. 12 113
[11] Pan F, Wang Y, Jiang K, Ni Z, Ma J, Zheng J, Quhe R G, Shi J, Yang J, Chen C and Lu J 2015 Sci. Rep. 5 9075
[12] Quhe R G, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[13] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[14] Ni Z Y, Zhong H X, Jiang X H, Quhe R G, Luo G F, Wang Y Y, Ye M, Yang J B, Shi J J and Lu J 2014 Nanoscale 6 7609
[15] Dvorak M, Oswald W and Wu Z 2013 Sci. Rep. 3 2289
[16] Dvorak M and Wu Z 2014 Phys. Rev. B 90 115415
[17] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P and Pedersen K 2008 Phys. Rev. Lett. 100 136804
[18] Gao N, Li J C and Jiang Q 2014 Chem. Phys. Lett. 592 222
[19] Gao N, Li J C and Jiang Q 2014 Phys. Chem. Chem. Phys. 16 11673
[20] Li L, Wang X, Zhao X and Zhao M 2013 Phys. Lett. A 377 2628
[21] Liu H, Gao J and Zhao J 2013 J. Phys. Chem. C 117 10353
[22] Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B and Lu J 2014 Sci. Rep. 4 5476
[23] Neek-Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
[24] Li X, Wu S, Zhou S and Zhu Z 2014 Nanoscale Res. Lett. 9 110
[25] Kaloni T P, Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 3192
[26] Kamal C, Chakrabarti A and Banerjee A 2014 Phys. Lett. A 378 1162
[27] Liu W, Wang Z F, Shi Q W, Yang J and Liu F 2009 Phys. Rev. B 80 233405
[28] Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R and Kyser D 2002 IEEE Int. Electron Devices Meeting, December 8–11, 2002, San Francisco, CA, USA, p. 251
[29] Doris B, Ieong M, Zhu T, Zhang Y, Steen M, Natzle W, Callegari S, Narayanan V, Cai J and Ku S 2003 IEEE Int. Electron Devices Meeting, December 8–10, 2003, Washington, DC, USA, p. 27.3.1
[30] Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S and Haensch W 2012 Nano Lett. 12 758
[31] Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J and Lu J 2015 Adv. Funct. Mater. 25 68
[32] Li H, Wang L, Liu Q, Zheng J, Mei W N, Gao Z, Shi J and Lu J 2012 Eur. Phys. J. B 85 1
[33] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[34] Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 422
[35] Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu B L, Liu F and Duan W 2007 Nano Lett. 7 1469
[36] Franklin A D and Chen Z 2010 Nat. Nanotech. 5 858
[37] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechol. 5 225
[38] Sacconi F, Persson M P, Povolotskyi M, Latessa L, Pecchia A, Gagliardi A, Balint A, Fraunheim T and Di Carlo A 2007 J. Comput. Electron. 6 329
[39] Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 11 5465
[40] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotech. 10 227
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[8] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[9] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[10] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[11] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[12] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[13] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] DC and analog/RF performance of C-shaped pocket TFET (CSP-TFET) with fully overlapping gate
Zi-Xin Chen(陈子馨), Wei-Jing Liu(刘伟景), Jiang-Nan Liu(刘江南), Qiu-Hui Wang(王秋蕙), Xu-Guo Zhang(章徐国), Jie Xu(许洁), Qing-Hua Li(李清华), Wei Bai(白伟), and Xiao-Dong Tang(唐晓东). Chin. Phys. B, 2022, 31(5): 058501.
No Suggested Reading articles found!