Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088102    DOI: 10.1088/1674-1056/24/8/088102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery

Luo Guang-Sheng (罗广生)a b, Huang Shi-Ting (黄诗婷)a b, Zhao Ning (赵宁)a b, Cui Zhong-Hui (崔忠慧)a, Guo Xiang-Xin (郭向欣)a
a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

This paper invesitages the synergetic effect between high-surface-area carbons, such as Ketjan Black (KB) or Super P (SP) carbon materials, and low-surface-area carbon paper (CP) current collectors and it also examines their influence on the discharge performance of nonaqueous Li–O2 cells. Ultra-large specific discharge capacities are found in the KB/CP cathodes, which are much greater than those observed in the individual KB or CP cathodes. Detailed analysis indicates that such unexpectedly large capacities result from the synergetic effect between the two components. During the initial discharges of KB or SP materials, a large number of superoxide radical (O2·-) species in the electrolytes and Li2O2 nuclei at the CP surfaces are formed, which activate the CP current collectors to contribute considerable capacities. These results imply that CP could be a superior material for current collectors in terms of its contribution to the overall discharge capacity. On the other hand, we should be careful to calculate the specific capacities of the oxygen cathodes when using CP as a current collector; i.e., ignoring the contribution from the CP may cause overstated discharge capacities.

Keywords:  lithium–      oxygen batteries      high discharge capacity      carbon paper current collectors      large-surface carbon-based cathodes      synergetic effect  
Received:  27 January 2015      Revised:  13 February 2015      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  88.80.ff (Batteries)  
Fund: 

Project supported by the Natural Science Foundation of the Chinese Academy of Sciences (Grant No. KGZD-EW-202-2), the National Key Basic Research Program of China (Grant No. 2014CB921004), and the National Natural Science Foundation of China (Grant No. U1232111).

Corresponding Authors:  Guo Xiang-Xin     E-mail:  XXGuo@mail.sic.ac.cn

Cite this article: 

Luo Guang-Sheng (罗广生), Huang Shi-Ting (黄诗婷), Zhao Ning (赵宁), Cui Zhong-Hui (崔忠慧), Guo Xiang-Xin (郭向欣) A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery 2015 Chin. Phys. B 24 088102

[1] Abraham K M and Jiang Z 1996 J. Electrochem. Soc. 143 1
[2] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[3] Liu Y L, Wang R, Lyu Y C, Li H and Chen L Q 2014 Energy Environ. Sci. 7 677
[4] Dong S M, Wang S, Guan J, Li S M, Lan Z G, Chen C, Shang C Q, Zhang L X, Wang X G, Gu L, Cui G L and Chen L Q 2014 J. Phys. Chem. Lett. 5 615
[5] Zheng H, Xiao D D, Li X, Liu Y L, Wu Y, Wang J P, Jiang K L, Chen C, Lu L, Wei X L, Hu Y S, Chen Q and Li H 2014 Nano Lett. 14 4245
[6] Yu P F, Cui Z H, Fan W G and Guo X X 2013 Chin. Phys. B 22 038101
[7] Whittingham M S 2014 Chem. Rev. 114 11414
[8] Pan H L, Hu Y S, Li H and Chen L Q 2011 Chin. Phys. B 20 118202
[9] Guo X X, Huang S T, Zhao N, Cui Z H, Fan W G, Li C L and Li H 2014 J. Inorg. Mater. 29 113 (in Chinese)
[10] Dong S M, Chen X, Zhang K J, Gu L, Zhang L X, Zhou X H, Li L F, Liu Z H, Han P X, Xu H X, Yao J H, Zhang C J, Zhang X Y, Shang C Q, Cui G L and Chen L Q 2011 Chem. Commun. 47 11291
[11] Zhou X S, Dai Z H, Liu S H, Bao J C and Guo Y G 2014 Adv. Mater. 26 3943
[12] Zhou X S, Bao J C, Dai Z H and Guo Y G 2013 J. Phys. Chem. C 117 25367
[13] Huang L X, Chen Y F, Li P J, Huan R, He J R, Wang Z G, Hao X, Liu J B, Zhang W L and Li Y R 2012 Acta Phys. Sin. 61 156103 (in Chinese)
[14] Chen C, Ru Q, Hu S J, An B N and Song X 2014 Acta Phys. Sin. 63 198201 (in Chinese)
[15] Xu S Y, Wu X Y, Li Y M, Hu Y S and Chen L Q 2014 Chin. Phys. B 23 118202
[16] Christensen J, Albertus P, Sanchez-Carrera R S, Lohmann T, Kozinsky B, Liedtke R, Ahmed J and Kojic A 2012 J. Electrochem. Soc. 159 R1
[17] Shao Y Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y and Liu J 2013 Adv. Funct. Mater. 23 987
[18] McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshoj J S, Norskov J K and Luntz A C 2012 J. Phys. Chem. Lett. 3 997
[19] Peng Z Q, Freunberger S A, Chen Y H and Bruce P G 2012 Science 337 563
[20] Meini S, Piana M, Beyer H, Schwämmlein J and Gasteiger H A 2012 J. Electrochem. Soc. 159 A2135
[21] Guo X X and Zhao N 2013 Adv. Energy Mater. 3 1413
[22] Jung H G, Hassoun J, Park J B, Sun Y K and Scrosati B 2012 Nat. Chem. 4 579
[23] Cui Z H and Guo X X 2014 J. Power Sources 267 20
[24] Xu J J, Wang Z L, Xu D, Zhang L L and Zhang X B 2013 Nat. Commun. 4 2438
[25] Yang W, Salim J, Ma C, Ma Z H, Sun C W, Li J Q, Chen L Q and Kim Y 2013 Electrochem. Commun. 28 13
[26] Cui Z H, Fan W G and Guo X X 2013 J. Power Sources 235 251
[27] Fan W G, Cui Z H and Guo X X 2013 J. Phys. Chem. C 117 2623
[28] Xiao J, Mei D H, Li X L, Xu W, Wang D Y, Graff G L, Bennett W D, Nie Z M, Saraf L V, Aksay I A, Liu J and Zhang J G 2011 Nano Lett. 11 5071
[29] Wang L X, Ara M, Wadumesthrige K, Salley S and Ng K Y S 2013 J. Power Sources 234 8
[30] Lu Y C, Xu Z, Gasteiger H, Chen S, Hamad-Schifferli K and Yang S H 2010 J. Am. Chem. Soc. 132 12170
[31] Zhai D, Wang H H, Yang J, Lau K C, Li K, Amine K and Curtiss L A 2013 J. Am. Chem. Soc. 135 15364
[32] Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang L J, Wang Y G and Li Q W 2014 Adv. Mater. 26 3258
[33] Luo Z K, Liang C S, Wang F, Xu Y H, Chen J, Liu D, Sun H Y, Yang H and Fan X P 2014 Adv. Funct. Mater. 24 2101
[34] Hassoun J, Jung H G, Lee D J, Park J B, Amine K, Sun Y K and Scrosati B 2012 Nano Lett. 12 5775
[35] Xu L, Ma J, Li B H and Kang F Y 2014 J. Power Sources 255 187
[36] Geaney H, O'Connell J, Holmes J D and O'Dwyer C 2014 J. Electrochem. Soc. 161 A1964
[37] Huang S T, Fan W G, Guo X X, Meng F H and Liu X Y 2014 ACS Appl. Mater. Interfaces 6 21567
[38] Gowda S R, Brunet A, Wallraff G M and McCloskey B D 2013 J. Phys. Chem. Lett. 4 276
[39] Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F and Bruce P G 2011 Angew. Chem. Int. Ed. 50 8609
[40] Thotiyl M M O, Freunberger S A, Peng Z and Bruce P G 2013 J. Am. Chem. Soc. 135 494
[41] Zhao N, Li C L and Guo X X 2014 Phys. Chem. Chem. Phys. 16 15646
[1] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[2] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[3] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[4] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[5] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[6] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[7] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[8] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[9] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[10] Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots
Guohua Cao(曹国华), Zhifei Wei(魏志飞), Yuehong Yin(殷月红), Lige Fu(付丽歌), Yukun Liu(刘玉坤), Shengli Qiu(邱胜利), and Baoqing Zhang(张宝庆). Chin. Phys. B, 2021, 30(9): 097802.
[11] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[12] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[13] A new sulfur-doped source and synergistic effect with nitrogen for carbon dots produced from glucose
Lige Fu(付丽歌), Yuehong Yin(殷月红), Guohua Cao(曹国华), Pingping Wu(武苹苹), Jian Wang(汪舰), Lingling Yan(闫玲玲), Baoqing Zhang(张宝庆), Ming Li(李明). Chin. Phys. B, 2019, 28(12): 128102.
[14] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[15] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
No Suggested Reading articles found!