INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical study of the effects of vacancy and oxygen impurity on Ti2GaC |
Chen Jun-Jun (陈俊俊)a, Duan Ji-Zheng (段济正)b, Zhao Da-Qiang (赵大强)a, Zhang Jian-Rong (张建荣)b, Yang Yang (杨阳)a, Duan Wen-Shan (段文山)a |
a College of Physics and Electronics, Northwest Normal University (NWNU), Lanzhou 730070, China; b Joint Laboratory of Atomic and Molecular Physics of NWNU & IMPCAS, Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), Lanzhou 730000, China |
|
|
Abstract This paper presents the mono-vacancy formation and migration energies of each element Ti, Ga, and C in the MAX phase Ti2GaC, which are obtained by first principles calculations. We also calculate the formation energies of oxygen substituting for Ti, Ga, and C and two formation energies of oxygen interstitial in different sites. The results show that the formation energy of oxygen substituting for Ti is the highest, and the formation energies of the O substitution for Ga atoms decrease as the oxygen concentration increases. The two different formation energies of one oxygen interstitial show that the stable site for the oxygen interstitial is at the center of the triangle composed by three Ga atoms. The effects of vacancy, oxygen substitution, and the interstitial on the electronic properties of Ti2GaC are also discussed in light of the density of states and the electron charge density.
|
Received: 23 December 2014
Revised: 10 February 2015
Accepted manuscript online:
|
PACS:
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
63.20.dk
|
(First-principles theory)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA03030100), and the National Natural Science Foundation of China (Grant Nos. 11275156 and 11304324). |
Corresponding Authors:
Duan Wen-Shan
E-mail: duanws@nwnu.edu.cn
|
Cite this article:
Chen Jun-Jun (陈俊俊), Duan Ji-Zheng (段济正), Zhao Da-Qiang (赵大强), Zhang Jian-Rong (张建荣), Yang Yang (杨阳), Duan Wen-Shan (段文山) Theoretical study of the effects of vacancy and oxygen impurity on Ti2GaC 2015 Chin. Phys. B 24 088101
|
[1] |
Barsoum M W 2000 Prog. Solid State Chem. 28 201
|
[2] |
Music D and Schneider J M 2007 JOM 59 60
|
[3] |
Eklund P, Beckers M, Jansson U, Högberg H and Hultman L 2010 Thin Solid Films 518 1851
|
[4] |
Barsoum M W and Radovic M 2011 Ann. Rev. Mater. Res. 41 195
|
[5] |
Wang J Y and Zhou Y C 2009 Ann. Rev. Mater. Res. 39 415
|
[6] |
Weber W J, Wang L M and Yu N 1996 Nucl. Instrum. Method B 116 322
|
[7] |
Riley D P and Kisi E H 2007 J. Am. Ceram. Soc. 90 2231
|
[8] |
Nappè J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Thomè L 2011 J. Nucl. Mater. 409 53
|
[9] |
Buchholt K, Ghandi R, Domeij M, Zetterling C M, Lu J, Eklund P, Hultman L and Spetz A L 2011 Appl. Phys. Lett. 98 042108
|
[10] |
Wang Z C, Saito M, Tsukimoto S and Ikuara Y 2009 Adv. Mater. 21 4966
|
[11] |
Sun Z M, Hashimoto H, Tian W and Zou Y 2010 Int. J. Appl. Ceram. Technol. 7 704
|
[12] |
Etzkorn J, Ade M, Kotzott D, Kleczek M and Hillebrecht H 2009 J. Solid State Chem. 182 995
|
[13] |
Bouhemadou A and Khenata R 2007 J. Appl. Phys. 102 043528
|
[14] |
Music D, Ahuja R and Schneider J M 2007 Surf. Sci. 601 896
|
[15] |
Hug G 2006 Phys. Rev. B 74 184113
|
[16] |
MO Y, Rulis P and Ching W Y 2012 Phys. Rev. B 86 165122
|
[17] |
Kang D B 2013 J. Korean Chem. Soc. 57 35
|
[18] |
Duong T, Gibbons S, Kinra R and Arróyave R 2011 J. Appl. Phys. 110 093504
|
[19] |
Iwaszuk A, Mulheran P A and Nolan M 2013 J. Mater. Chem. A 1 2515
|
[20] |
Akimov A I, Tkachenko T M and Lebedev S A 2006 Inorg. Mater. 42 331
|
[21] |
Music D, Sun Z, Ahujav R and Schneider J M 2007 Surf. Sci. 601 896
|
[22] |
Sun X, Gu Y S, Wang X Q and Zhang Y 2012 Chin. J. Chem. Phys. 25 261
|
[23] |
Dai G Z, Dai Y H, Xu T L, Wang J Y, Zhao Y Y, Chen J N and Liu Q 2014 Acta Phys. Sin. 63 123101 (in Chinese)
|
[24] |
Liao T, Wang J Y and Zhou Y C 2008 Scr. Mater. 59 854
|
[25] |
Liu B, Wang J Y, Li F Z and Zhou Y C 2009 Appl. Phys. Lett. 94 181906
|
[26] |
Music D, Ahuja R and Schneider J M 2005 Appl. Phys. Lett. 86 031911
|
[27] |
Baben M, Shang L, Emmerlich J and Schneider J M 2012 Acta Mater. 60 4810
|
[28] |
Song G M, Pei Y T, Sloof W G, Li S B, De Hosson J T M and Van der Zwaag S 2008 Scr. Mater. 58 13
|
[29] |
Yang H J, Pei Y T, Rao J C, De Hosson J T M, Li S B and Song G M 2011 Scr. Mater. 65 135
|
[30] |
Sigumonrong D P, Zhang J, Zhou Y C, Music D, Emmerlich J, Mayer J and Schneider J M 2011 Scr. Mater. 64 347
|
[31] |
Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[32] |
Zhao S J, Xue J M, Wang Y G and Huang Q 2014 J. Appl. Phys. 115 023503
|
[33] |
Middleburgh S C, Lumpkin G R and Riley D 2013 J. Am. Ceram. Soc. 96 3196
|
[34] |
Zhao S J, Xue J M, Wang Y G and Huang Q 2014 J. Phys. Chem. Solids 75 384
|
[35] |
Xu Y G, Ou X D and Rong X M 2014 Mater. Lett. 116 322
|
[36] |
Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Phys. Rev. B 77 245202
|
[37] |
Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
|
[38] |
Sun X, Guo Y S, Wang X Q and Zhang Y 2012 Chin. J. Chem. Phys. 25 261
|
[39] |
Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U and Rosèn J 2012 Phys. Rev. Lett. 109 035502
|
[40] |
Chen J J, Duan J Z, Wang C L, Duan W S and Yang L 2014 Comput. Mater. Sci. 82 521
|
[41] |
Shein I R and Ivanovskill A L 2013 Physica B 410 42
|
[42] |
Ali M S, Parvin F, Islam A K M A and Hossain M A 2013 Comput. Mater. Sci. 74 119
|
[43] |
Zhu J F, Jiang H, Wang F, Yang C H and Xiao D 2014 J. Eur. Ceram. Soc. 34 4137
|
[44] |
Tsuchiya T, Yusa H and Tsuchiya J 2007 Phys. Rev. B 76 174108
|
[45] |
Swamy V 2014 Phys. Chem. Phys. 16 18156
|
[46] |
Yeh C L and Yang W J 2014 J. Alloys Compd. 608 292
|
[47] |
Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S and Hayatullah 2014 Chin. Phys. Lett. 31 067401
|
[48] |
Hou Q Y, Guo S Q and Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese)
|
[49] |
Qiu P Y 2014 Chin. Phys. Lett. 31 066201
|
[50] |
Jia Y F, Shu X L, Xie Y and Chen Z Y 2014 Chin. Phys. B 23 076105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|