Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells |
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚)† |
Fuel-Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells&Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
|
|
Abstract Proton-exchange membrane fuel cells (PEMFCs) have been widely used commercially to solve the energy crisis and environmental pollution. The oxygen reduction reaction (ORR) at the cathode is the rate-determining step in PEMFCs. Platinum (Pt) catalysts are used to accelerate the ORR kinetics. Pt's scarcity, high cost, and instability in an acidic environment at high potentials seriously hinder the commercialization of PEMFCs. Therefore, studies should explore electrocatalysts with high catalytic activity, enhanced stability, and low-Pt loading. This review briefly introduces the research progress on Pt and Pt-based ORR electrocatalysts for PEMFCs, including anticorrosion catalyst supports, Pt, and Pt-based alloy electrocatalysts. Advanced preparation technology and material characterization of Pt-based ORR electrocatalysts are necessary to improve the performance and corresponding reaction mechanisms.
|
Received: 17 April 2022
Revised: 23 September 2022
Accepted manuscript online: 07 November 2022
|
PACS:
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
82.45.Jn
|
(Surface structure, reactivity and catalysis)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1502503) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21090101). |
Corresponding Authors:
Zhigang Shao
E-mail: zhgshao@dicp.ac.cn
|
Cite this article:
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚) Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells 2022 Chin. Phys. B 31 128108
|
[1] Yang L, Cheng D J, Xu H X, Zeng X F, Wan X, Shui J L, Xiang Z H and Cao D P 2018 Proc. Natl. Acad. Sci. USA 115 6626 [2] Gasteiger H A, Panels J E and Yan S G 2004 J. Power Sources 127 162 [3] Tang R, Wei Z D and Shao Z G 2009 Battery Bimonthly 39 44 [4] Yu X and Ye S 2007 J. Power Sources 172 133 [5] Jung N, Chung D Y, Ryu J, Yoo S J and Sung Y E 2014 Nano Today 9 433 [6] Shao Y Y, Liu J, Wang Y and Lin Y H 2009 J. Mater. Chem. 19 46 [7] Luo Y and Alonso-Vante N 2015 Electrochim. Acta 179 108 [8] Tang X J, Fang D H, Qu L J, Xu D Y, Qin X P, Qin B W, Song W, Shao Z G and Yi B L 2019 Chin. J. Catal. 40 504 [9] Li J R, Sharma S, Liu X M, Pan Y T, Spendelow J S, Chi M F, Jia Y K, Zhang P, Cullen D A, Xi Z, Lin H H, Yin Z Y, Shen B, Muzzio M, Yu C, Kim Y S, Peterson A A, More K L, Zhu H Y and Sun S H 2019 Joule 3 124 [10] Wang Q, Zhao Z L, Zhang Z, Feng T L, Zhong R Y, Xu H, Pantelides S T and Gu M 2020 Adv. Sci. 7 1901279 [11] Luo X, Hou Z J, Ming P W, Shao Z G and Yi B L 2008 Chin. J. Catal. 29 330 [12] Watanabe M, Yano H, Uchida H and Tryk D A 2018 J. Electroanal. Chem. 819 359 [13] Najam T, Shah S S A, Ding W, Jiang J X, Jia L, Yao W, Li L and Wei Z D 2018 Angew. Chem. Int. Ed. Engl. 57 15101 [14] Ramaswamy N, Gu W B, Ziegelbauer J M and Kumaraguru S 2020 J. Electrochem. Soc. 167 064515 [15] Yarlagadda V, Carpenter M K, Moylan T E, Kukreja R S, Koestner R K, Gu W B, Thompson L and Kongkanand A 2018 ACS Energy Lett. 3 618 [16] Wang X X, Hwang S, Pan Y T, Chen K, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D and Wu G 2018 Nano Lett. 18 4163 [17] Zhang C W, Xu L B, Shan N N, Sun T T, Chen J F and Yan Y S 2014 ACS Catal. 4 1926 [18] Sun Y Q, Wu Q and Shi G Q 2011 Energy Environ. Sci. 4 1113 [19] Antolini E 2012 Appl. Catal. B 123-124 52 [20] Tang X J, Zeng Y C, Cao L S, Yang L M, Wang Z Q, Fang D H, Gao Y Y, Shao Z G and Yi B L 2018 J. Mater. Chem. A 6 15074 [21] Zhou L H, Wang Y X, Tang J, Li J X, Wang S L and Wang Y 2017 Micropor. Mesopor. Mater. 247 116 [22] Liu S W, Li C Z, Zachman M J, et al. 2022 Nat. Energy 7 652 [23] Qiao Z, Wang C Y, Li C Z, Zeng Y C, Hwang S, Li B Y, Karakalos S, Park J, Kropf A J, Wegener E C, Gong Q, Xu H, Wang G F, Myers D J, Xie J, Spendelow J S and Wu G 2021 Energy Environ. Sci. 14 4948 [24] Li M H, Yang Z, Pan T X, Tong X, Hu C G and Tian J 2022 J. Mater. Eng. 50 132 [25] Kuttiyiel K A, Sasaki K, Park G G, Vukmirovic M B, Wu L J, Zhu Y M, Chen J G G and Adzic R 2017 Chem. Commun. 53 1660 [26] Wang Y J, Wilkinson D P and Zhang J 2011 Chem. Rev. 111 7625 [27] Huang S Y, Ganesan P, Park S and Popov B N 2009 J. Am. Chem. Soc. 131 13898 [28] Wang J and Swain G M 2003 J. Electrochem. Soc. 150 E24 [29] Antolini E and Gonzalez E R 2009 Solid State Ionics 180 746 [30] Lv H F, Peng T, Wu P, Pan M and Mu S C 2012 J. Mater. Chem. 22 9155 [31] Nie M, Shen P K, Wu M, Wei Z D and Meng H 2006 J. Power Sources 162 173 [32] Zhong C J, Luo J, Fang B, Wanjala B N, Njoki P N, Loukrakpam R and Yin J 2010 Nanotechnology 21 062001 [33] Xia B Y, Ng W T, Wu H B, Wang X and Lou X W D 2012 Angew. Chem. Int. Ed. 51 7213 [34] Xiang Z P, Tan A D, Fu Z Y, Piao J H and Liang Z X 2020 J. Energy Chem. 49 323 [35] Wang C, Daimon H, Lee Y, Kim J and Sun S H 2007 J. Am. Chem. Soc. 129 6974 [36] Marković N M, Adžić R R, Cahan B D and Yeager E B 1994 J. Electroanal. Chem. 377 249 [37] Marković N M, Gasteiger H A and Ross Jr P N 1995 J. Phys. Chem. 99 3411 [38] Yu X and Ye S 2007 J. Power Sources 172 145 [39] Shao Y, Yin G and Gao Y 2007 J. Power Sources 171 558 [40] Hoque M A, Hassan F M, Jauhar A M, Jiang G P, Pritzker M, Choi J Y, Knights S, Ye S Y and Chen Z W 2018 ACS Sustainable Chem. Eng. 6 93 [41] Wang R Y, Higgins D C, Hoque M A, Lee D U, Hassan F and Chen Z W 2013 Sci. Rep. 3 2431 [42] Yao Z Y, Yuan Y L, Cheng T, Gao L, Sun T L, Lu Y F, Zhou Y G, Galindo P L, Yang Z L, Xu L, Yang H and Huang H W 2021 Nano Lett. 21 9354 [43] Wang C, Wang X D, Lai F Y, Liu Z, Dong R H, Li W, Sun H X and Geng B Y 2020 ACS Appl. Nano Mater. 3 5698 [44] Zhai L P, Yang S, Yang X B, Ye W Y, Wang J, Chen W H, Guo Y, Mi L W, Wu Z J, Soutis C, Xu Q and Jiang Z 2020 Chem. Mater. 32 9747 [45] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J and Zhang T 2011 Nat. Chem. 3 634 [46] Zhu C Z, Fu S F, Shi Q R, Du D and Lin Y 2017 Angew. Chem. Int. Ed. Engl. 56 13944 [47] Liu J, Jiao M G, Lu L L, Barkholtz H M, Li Y P, Wang Y, Jiang L H, Wu Z J, Liu D J, Zhuang L, Ma C, Zeng J, Zhang B S, Su D S, Song P, Xing W, Xu W L, Wang Y, Jiang Z and Sun G Q 2017 Nat. Commun. 8 15938 [48] Liu J, Bak J, Roh J, Lee K S, Cho A, Han J W and Cho E 2021 ACS Catal. 11 466 [49] Zhu X F, Tan X, Wu K H, Haw S C, Pao C W, Su B J, Jiang J J, Smith S C, Chen J M, Amal R and Lu X Y 2021 Angew. Chem. Int. Ed. 60 21911 [50] Zhang H J, Zeng Y C, Cao L S, Yang L M, Fang D H, Yi B L and Shao Z G 2017 Front. Energy 11 260 [51] Sun X H, Jiang K Z, Zhang N, Guo S J and Huang X Q 2015 ACS Nano 9 7634 [52] Luo L X, Fu C H, Wu A M, Zhuang Z C, Zhu F J, Jiang F L, Shen S Y, Cai X Y, Kang Q, Zheng Z F, Hu C Y, Yin J W, Xia G F and Zhang J L 2022 Nano Res. 15 1892 [53] Liu Y X, Du L, Kong F P, Han G K, Gao Y Z, Du C Y, Zuo P J and Yin G P 2019 ACS Sustain. Chem. Eng. 8 1295 [54] Zhang G, Shao Z G, Lu W T, Li G F, Liu F Q and Yi B L 2012 Electrochem Commun. 22 145 [55] Park J Y, Park H S, Han S B, Kwak D H, Won J E, Lim T and Park K W 2019 J. Ind. Eng. Chem. 77 105 [56] Park H Y, Jeon T Y, Jang J H, Yoo S J, Choi K H, Jung N, Chung Y H, Ahn M, Cho Y H, Lee K S and Sung Y E 2013 Appl. Catal. B 129 375 [57] Wang D L, Xin H L L, Hovden R, Wang H S, Yu Y C, Muller D A, Disalvo F J and Abruña H D 2013 Nat. Mater. 12 81 [58] Lim J, Jung C, Hong D, Bak J, Shin J, Kim M, Song D, Lee C, Lim J, Lee H, Lee H M and Cho E 2022 J. Mater. Chem. A 10 7399 [59] Hu Y Z, Shen T, Zhao X R, Zhang J J, Lu Y, Shen J, Lu S F, Tu Z K, Xin H L L and Wang D L 2020 Appl. Catal. B 279 119370 [60] Rong H P, Mao J J, Xin P Y, He D S, Chen Y J, Wang D S, Niu Z Q, Wu Y and Li Y D 2016 Adv. Mater. 28 2540 [61] Wang C, Li D G, Chi M F, Pearson J, Rankin R B, Greeley J, Duan Z Y, Wang G F, van der Vliet D, More K L, Markovic N M and Stamenkovic V R 2012 J. Phys. Chem. Lett. 3 1668 [62] Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S J, Su D, Lu G and Sun S H 2014 J. Am. Chem. Soc. 136 7734 [63] Chen L, Bock C, Mercier P H J and MacDougall B R 2012 Electrochim. Acta 77 212 [64] Zhu J, Yang Y, Chen L X, Xiao W P, Liu H F, Abruña H D and Wang D L 2018 Chem. Mater. 30 5987 [65] Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H and Li Q 2019 Adv. Energy Mater. 9 1803771 [66] Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T and Huang Y 2015 Science 348 1230 [67] He C M, Ma Z L, Wu Q, Cai Y Z, Huang Y G, Liu K, Fan Y J, Wang H Q, Li Q Y, Qi J H, Li Q K and Wu X W 2020 Electrochim. Acta 330 135119 [68] Luo Y, Kirchhoff B, Fantauzzi D, Calvillo L, Estudillo-Wong L A, Granozzi G, Jacob T and Alonso-Vante N 2018 ChemSusChem 11 193 [69] Cho K Y, Yeom Y S, Seo H Y, Kumar P, Lee A S, Baek K Y and Yoon H G 2017 ACS Appl. Mater. Interfaces 9 1524 [70] Wang Z X, Yao X Z, Kang Y Q, Xia D S and Gan L 2019 Catalysts 9 569 [71] Liu S C, Li S, Wang R Y, Rao Y, Zhong Q, Hong K and Pan M 2019 J. Electrochem. Soc. 166 F1308 [72] Torihata M, Nakamura M, Todoroki N, Wadayama T and Hoshi N 2021 Electrochem. Commun. 125 107007 [73] Luo L X, Fu C H, Shen S Y, Zhu F J and Zhang J L 2020 J. Mater. Chem. A 8 22389 [74] Zhang S, Guo S J, Zhu H Y, Su D and Sun S H 2012 J. Am. Chem. Soc. 134 5060 [75] Zhu H, Cai Y Z, Wang F H, Gao P and Cao J D 2018 ACS Appl. Mater. Interfaces 10 22156 [76] Sasaki K, Naohara H, Choi Y M, Cai Y, Chen W F, Liu P and Adzic R 2012 Nat. Commun. 3 1115 [77] Arumugam B, Tamaki T and Yamaguchi T 2015 ACS Appl. Mater. Interfaces 7 16311 [78] Miracle D B and Senkov O N 2017 Acta Mater. 122 448 [79] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1 [80] Chen X T, Si C H, Gao Y L, Frenzel J, Sun J Z, Eggeler G and Zhang Z H 2015 J. Power Sources 273 324 [81] Li S Y, Tang X W, Jia H L, Li H L, Xie G Q, Liu X J, Lin X and Qiu H J 2020 J. Catal. 383 164 [82] Yu Y N, Xia F J, Wang C J, Wu J S, Fu X B, Ma D S, Lin B C, Wang J A, Yue Q and Kang Y J 2022 Nano Res. 15 7868 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|