|
|
Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface |
Yan Ling-Hao (闫凌昊)a, Wu Rong-Ting (武荣庭)a, Bao De-Liang (包德亮)b, Ren Jun-Hai (任俊海)a, Zhang Yan-Fang (张艳芳)a, Zhang Hai-Gang (张海刚)c, Huang Li (黄立)a, Wang Ye-Liang (王业亮)a b, Du Shi-Xuan (杜世萱)a b, Huan Qing (郇庆)a b, Gao Hong-Jun (高鸿钧)a b |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b University of Chinese Academy of Sciences, Beijing 100049, China; c Center for Nanoscale Materials, Argonne National Laboratory, Chicago, IL 60439, USA |
|
|
Abstract Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.
|
Received: 19 March 2015
Revised: 21 April 2015
Accepted manuscript online:
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.35.bm
|
(Polymers, organics)
|
|
68.35.Fx
|
(Diffusion; interface formation)
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390501, 51325204, and 11204361), the National Basic Research Program of China (Grant Nos. 2011CB808401 and 2011CB921702), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ1203451), the National Supercomputing Center in Tianjin, China, and the Chinese Academy of Sciences. |
Corresponding Authors:
Du Shi-Xuan, Huan Qing
E-mail: sxdu@iphy.ac.cn;huanq@iphy.ac.cn
|
Cite this article:
Yan Ling-Hao (闫凌昊), Wu Rong-Ting (武荣庭), Bao De-Liang (包德亮), Ren Jun-Hai (任俊海), Zhang Yan-Fang (张艳芳), Zhang Hai-Gang (张海刚), Huang Li (黄立), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Huan Qing (郇庆), Gao Hong-Jun (高鸿钧) Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface 2015 Chin. Phys. B 24 076802
|
[1] |
Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541
|
[2] |
Lehn J M 2002 Science 295 2400
|
[3] |
Barth J V, Costantini G and Kern K 2005 Nature 437 671
|
[4] |
Macor L, Fungo F, Tempesti T, Durantini E N, Otero L, Barea E M, Fabregat-Santiago F and Bisquert J 2009 Energy Environ. Sci. 2 529
|
[5] |
Kobayashi N, Nevin W A, Mizunuma S, Awaji H and Yamaguchi M 1993 Chem. Phys. Lett. 205 51
|
[6] |
Isaacs M, Aguirre M J, Toro-Labbe A, Costamagna J, Paez M and Zagal J H 1998 Electrochim. Acta 43 1821
|
[7] |
Kobayashi N, Nakajima S, Ogata H and Fukuda T 2004 Chem. Eur. J. 10 6294
|
[8] |
El-Khouly M E, Gutierrez A M, Sastre-Santos A, Fernandez-Lazaro F and Fukuzumi S 2012 Phys. Chem. Chem. Phys. 14 3612
|
[9] |
Lim B, Margulis G Y, Yum J H, Unger E L, Hardin B E, Grätzel M, McGehee M D and Sellinger A 2013 Org. Lett. 15 784
|
[10] |
Stivala C E, Gu Z, Smith L L and Zakarian A 2012 Org. Lett. 14 804
|
[11] |
Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
|
[12] |
Liu L, Yang K, Jiang Y, Song B, Xiao W, Shiru S, Du S, Ouyang M, Hofer W A, Castro Neto A H and Gao H J 2015 Phys. Rev. Lett. 114 126601
|
[13] |
Wu R, Yan L, Zhang Y, Ren J, Bao D, Zhang H, Wang Y, Du S, Huan Q and Gao H J 2013 Sci. Rep. 3 1210
|
[14] |
Warner M, Din S, Tupitsyn I S, Morley G W, Stoneham A M, Gardener J A, Wu Z, Fisher A J, Heutz S, Kay C W M and Aeppli G 2013 Nature 503 504
|
[15] |
Gao L, Liu Q, Zhang Y Y, Jiang N, Zhang H G, Cheng Z H, Qiu W F, Du S X, Liu Y Q, Hofer W A and Gao H J 2008 Phys. Rev. Lett. 101 197209
|
[16] |
Lu X, Hipps K W, Wang X D and Mazur U 1996 J. Am. Chem. Soc. 118 7197
|
[17] |
Lu X and Hipps K W 1997 J. Phys. Chem. B 101 5391
|
[18] |
Lackinger M and Hietschold M 2002 Surf. Sci. 520 L619
|
[19] |
Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M and Gao H J 2007 J. Phys. Chem. C 111 9240
|
[20] |
Cheng Z H, Gao L, Deng Z T, Liu Q, Jiang N, Lin X, He X B, Du S X and Gao H J 2007 J. Phys. Chem. C 111 2656
|
[21] |
Bobaru S C, Salomon E, Layet J M and Angot T 2011 J. Phys. Chem. C 115 5875
|
[22] |
Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X and Gao H J 2011 J. Phys. Chem. C 115 21750
|
[23] |
Wang Y, Wu K, Kroeger J and Berndt R 2012 AIP Adv. 2 041402
|
[24] |
Liljeroth P, Repp J and Meyer G 2007 Science 317 1203
|
[25] |
Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F and Persson M 2011 Phys. Rev. Lett. 107
|
[26] |
Ogawa N, Mikaelian G and Ho W 2007 Phys. Rev. Lett. 98 166103
|
[27] |
Huan Q, Jiang Y, Zhang Y Y, Ham U and Ho W 2011 J. Chem. Phys. 135
|
[28] |
Mehring P, Beimborn A, Luhr T and Westphal C 2012 J. Phys. Chem. C 116 12819
|
[29] |
Pham T A, Song F and Stohr M 2014 Phys. Chem. Chem. Phys. 16 8881
|
[30] |
Wiggins B and Hipps K W 2014 J. Phys. Chem. C 118 4222
|
[31] |
Wu R, Yan L, Zhang Y, Ren J, Bao D, Zhang H, Wang Y, Du S, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
|
[32] |
Gopakumar T G, Muller F and Hietschold M 2006 J. Phys. Chem. B 110 6060
|
[33] |
Gopakumar T G, Muller F and Hietschold M 2006 J. Phys. Chem. B 110 6051
|
[34] |
Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
|
[35] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[36] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[37] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[38] |
Grimme S 2006 J. Comput. Chem. 27 1787
|
[39] |
Buçko T, Hafner J, Lebégue S and Ángyàn J G 2010 J. Phys. Chem. A 114 11814
|
[40] |
Tonigold K and Groß A 2010 J. Phys. Chem. A 132 224701
|
[41] |
Bai Y, Buchner F, Wendahl M T, Kellner I, Bayer A, Steinrueck H P, Marbach H and Gottfried J M 2008 J. Phys. Chem. C 112 6087
|
[42] |
Di Santo G, Castellarin-Cudia C, Fanetti M, Taleatu B, Borghetti P, Sangaletti L, Floreano L, Magnano E, Bondino F and Goldoni A 2011 J. Phys. Chem. C 115 4155
|
[43] |
Odom T W 2000 Science 290 1549
|
[44] |
Rusponi S, Cren T, Weiss N, Epple M, Buluschek P, Claude L and Brune H 2003 Nat. Mater. 2 546
|
[45] |
Hirjibehedin C F, Lutz C P and Heinrich A J 2006 Science 312 1021
|
[46] |
Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
|
[47] |
Hirjibehedin C F, Lin C Y, Otte A F, Ternes M, Lutz C P, Jones B A and Heinrich A J 2007 Science 317 1199
|
[48] |
Tanaka M 2013 Appl. Phys. A-Mater. Sci. Process. 112 781
|
[49] |
Azatyan S G, Iwami M and Lifshits V G 2005 Surf. Sci. 589 106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|