Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 076802    DOI: 10.1088/1674-1056/24/7/076802
RAPID COMMUNICATION Prev   Next  

Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

Yan Ling-Hao (闫凌昊)a, Wu Rong-Ting (武荣庭)a, Bao De-Liang (包德亮)b, Ren Jun-Hai (任俊海)a, Zhang Yan-Fang (张艳芳)a, Zhang Hai-Gang (张海刚)c, Huang Li (黄立)a, Wang Ye-Liang (王业亮)a b, Du Shi-Xuan (杜世萱)a b, Huan Qing (郇庆)a b, Gao Hong-Jun (高鸿钧)a b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Center for Nanoscale Materials, Argonne National Laboratory, Chicago, IL 60439, USA
Abstract  Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.
Keywords:  naphthalocyanine      Fe atoms      Ag(111) surface      adsorption behavior  
Received:  19 March 2015      Revised:  21 April 2015      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.35.bm (Polymers, organics)  
  68.35.Fx (Diffusion; interface formation)  
  68.35.Md (Surface thermodynamics, surface energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390501, 51325204, and 11204361), the National Basic Research Program of China (Grant Nos. 2011CB808401 and 2011CB921702), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ1203451), the National Supercomputing Center in Tianjin, China, and the Chinese Academy of Sciences.
Corresponding Authors:  Du Shi-Xuan, Huan Qing     E-mail:  sxdu@iphy.ac.cn;huanq@iphy.ac.cn

Cite this article: 

Yan Ling-Hao (闫凌昊), Wu Rong-Ting (武荣庭), Bao De-Liang (包德亮), Ren Jun-Hai (任俊海), Zhang Yan-Fang (张艳芳), Zhang Hai-Gang (张海刚), Huang Li (黄立), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Huan Qing (郇庆), Gao Hong-Jun (高鸿钧) Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface 2015 Chin. Phys. B 24 076802

[1] Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541
[2] Lehn J M 2002 Science 295 2400
[3] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[4] Macor L, Fungo F, Tempesti T, Durantini E N, Otero L, Barea E M, Fabregat-Santiago F and Bisquert J 2009 Energy Environ. Sci. 2 529
[5] Kobayashi N, Nevin W A, Mizunuma S, Awaji H and Yamaguchi M 1993 Chem. Phys. Lett. 205 51
[6] Isaacs M, Aguirre M J, Toro-Labbe A, Costamagna J, Paez M and Zagal J H 1998 Electrochim. Acta 43 1821
[7] Kobayashi N, Nakajima S, Ogata H and Fukuda T 2004 Chem. Eur. J. 10 6294
[8] El-Khouly M E, Gutierrez A M, Sastre-Santos A, Fernandez-Lazaro F and Fukuzumi S 2012 Phys. Chem. Chem. Phys. 14 3612
[9] Lim B, Margulis G Y, Yum J H, Unger E L, Hardin B E, Grätzel M, McGehee M D and Sellinger A 2013 Org. Lett. 15 784
[10] Stivala C E, Gu Z, Smith L L and Zakarian A 2012 Org. Lett. 14 804
[11] Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[12] Liu L, Yang K, Jiang Y, Song B, Xiao W, Shiru S, Du S, Ouyang M, Hofer W A, Castro Neto A H and Gao H J 2015 Phys. Rev. Lett. 114 126601
[13] Wu R, Yan L, Zhang Y, Ren J, Bao D, Zhang H, Wang Y, Du S, Huan Q and Gao H J 2013 Sci. Rep. 3 1210
[14] Warner M, Din S, Tupitsyn I S, Morley G W, Stoneham A M, Gardener J A, Wu Z, Fisher A J, Heutz S, Kay C W M and Aeppli G 2013 Nature 503 504
[15] Gao L, Liu Q, Zhang Y Y, Jiang N, Zhang H G, Cheng Z H, Qiu W F, Du S X, Liu Y Q, Hofer W A and Gao H J 2008 Phys. Rev. Lett. 101 197209
[16] Lu X, Hipps K W, Wang X D and Mazur U 1996 J. Am. Chem. Soc. 118 7197
[17] Lu X and Hipps K W 1997 J. Phys. Chem. B 101 5391
[18] Lackinger M and Hietschold M 2002 Surf. Sci. 520 L619
[19] Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M and Gao H J 2007 J. Phys. Chem. C 111 9240
[20] Cheng Z H, Gao L, Deng Z T, Liu Q, Jiang N, Lin X, He X B, Du S X and Gao H J 2007 J. Phys. Chem. C 111 2656
[21] Bobaru S C, Salomon E, Layet J M and Angot T 2011 J. Phys. Chem. C 115 5875
[22] Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X and Gao H J 2011 J. Phys. Chem. C 115 21750
[23] Wang Y, Wu K, Kroeger J and Berndt R 2012 AIP Adv. 2 041402
[24] Liljeroth P, Repp J and Meyer G 2007 Science 317 1203
[25] Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F and Persson M 2011 Phys. Rev. Lett. 107
[26] Ogawa N, Mikaelian G and Ho W 2007 Phys. Rev. Lett. 98 166103
[27] Huan Q, Jiang Y, Zhang Y Y, Ham U and Ho W 2011 J. Chem. Phys. 135
[28] Mehring P, Beimborn A, Luhr T and Westphal C 2012 J. Phys. Chem. C 116 12819
[29] Pham T A, Song F and Stohr M 2014 Phys. Chem. Chem. Phys. 16 8881
[30] Wiggins B and Hipps K W 2014 J. Phys. Chem. C 118 4222
[31] Wu R, Yan L, Zhang Y, Ren J, Bao D, Zhang H, Wang Y, Du S, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
[32] Gopakumar T G, Muller F and Hietschold M 2006 J. Phys. Chem. B 110 6060
[33] Gopakumar T G, Muller F and Hietschold M 2006 J. Phys. Chem. B 110 6051
[34] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[37] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[38] Grimme S 2006 J. Comput. Chem. 27 1787
[39] Buçko T, Hafner J, Lebégue S and Ángyàn J G 2010 J. Phys. Chem. A 114 11814
[40] Tonigold K and Groß A 2010 J. Phys. Chem. A 132 224701
[41] Bai Y, Buchner F, Wendahl M T, Kellner I, Bayer A, Steinrueck H P, Marbach H and Gottfried J M 2008 J. Phys. Chem. C 112 6087
[42] Di Santo G, Castellarin-Cudia C, Fanetti M, Taleatu B, Borghetti P, Sangaletti L, Floreano L, Magnano E, Bondino F and Goldoni A 2011 J. Phys. Chem. C 115 4155
[43] Odom T W 2000 Science 290 1549
[44] Rusponi S, Cren T, Weiss N, Epple M, Buluschek P, Claude L and Brune H 2003 Nat. Mater. 2 546
[45] Hirjibehedin C F, Lutz C P and Heinrich A J 2006 Science 312 1021
[46] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
[47] Hirjibehedin C F, Lin C Y, Otte A F, Ternes M, Lutz C P, Jones B A and Heinrich A J 2007 Science 317 1199
[48] Tanaka M 2013 Appl. Phys. A-Mater. Sci. Process. 112 781
[49] Azatyan S G, Iwami M and Lifshits V G 2005 Surf. Sci. 589 106
[1] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[2] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[7] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[8] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[9] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[10] Realization of semiconducting Cu2Se by direct selenization of Cu(111)
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(11): 116802.
[11] Direct observation of the scaling relation between density of states and pairing gap in a dirty superconductor
Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Peng-Bo Song(宋鹏博), Han-Bin Deng(邓翰宾), Chang-Jiang Yi(伊长江), Ying-Kai Sun(孙英开), R Wu(武睿), Jia-Xin Yin(殷嘉鑫), Youguo Shi(石友国), Ziqiang Wang(汪自强), and Shuheng H. Pan(潘庶亨). Chin. Phys. B, 2021, 30(10): 106802.
[12] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[13] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[14] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[15] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
No Suggested Reading articles found!